The renormalization procedure of the non-linear SU(2) sigma model in D=4
proposed in hep-th/0504023 and hep-th/0506220 is here tested in a truly
non-trivial case where the non-linearity of the functional equation is crucial.
The simplest example, where the non-linear term contributes, is given by the
two-loop amplitude involving the insertion of two \phi_0 (the constraint of the
non-linear sigma model) and two flat connections. In this case we verify the
validity of the renormalization procedure: the recursive subtraction of the
pole parts at D=4 yields amplitudes that satisfy the defining functional
equation. As a by-product we give a formal proof that in D dimensions (without
counterterms) the Feynman rules provide a perturbative symmetric solution.Comment: Latex, 3 figures, 19 page