The tetrahedron equation is a three-dimensional generalization of the
Yang-Baxter equation. Its solutions define integrable three-dimensional lattice
models of statistical mechanics and quantum field theory. Their integrability
is not related to the size of the lattice, therefore the same solution of the
tetrahedron equation defines different integrable models for different finite
periodic cubic lattices. Obviously, any such three-dimensional model can be
viewed as a two-dimensional integrable model on a square lattice, where the
additional third dimension is treated as an internal degree of freedom.
Therefore every solution of the tetrahedron equation provides an infinite
sequence of integrable 2d models differing by the size of this "hidden third
dimension". In this paper we construct a new solution of the tetrahedron
equation, which provides in this way the two-dimensional solvable models
related to finite-dimensional highest weight representations for all quantum
affine algebra Uq​(sl^(n)), where the rank n coincides with the size
of the hidden dimension. These models are related with an anisotropic
deformation of the sl(n)-invariant Heisenberg magnets. They were extensively
studied for a long time, but the hidden 3d structure was hitherto unknown. Our
results lead to a remarkable exact "rank-size" duality relation for the nested
Bethe Ansatz solution for these models. Note also, that the above solution of
the tetrahedron equation arises in the quantization of the "resonant three-wave
scattering" model, which is a well-known integrable classical system in 2+1
dimensions.Comment: v2: references adde