A general method is known to exist for studying Abelian and non-Abelian gauge
theories, as well as Euclidean quantum gravity, at one-loop level on manifolds
with boundary. In the latter case, boundary conditions on metric perturbations
h can be chosen to be completely invariant under infinitesimal diffeomorphisms,
to preserve the invariance group of the theory and BRST symmetry. In the de
Donder gauge, however, the resulting boundary-value problem for the Laplace
type operator acting on h is known to be self-adjoint but not strongly
elliptic. The latter is a technical condition ensuring that a unique smooth
solution of the boundary-value problem exists, which implies, in turn, that the
global heat-kernel asymptotics yielding one-loop divergences and one-loop
effective action actually exists. The present paper shows that, on the
Euclidean four-ball, only the scalar part of perturbative modes for quantum
gravity are affected by the lack of strong ellipticity. Further evidence for
lack of strong ellipticity, from an analytic point of view, is therefore
obtained. Interestingly, three sectors of the scalar-perturbation problem
remain elliptic, while lack of strong ellipticity is confined to the remaining
fourth sector. The integral representation of the resulting zeta-function
asymptotics is also obtained; this remains regular at the origin by virtue of a
spectral identity here obtained for the first time.Comment: 25 pages, Revtex-4. Misprints in Eqs. (5.11), (5.14), (5.16) have
been correcte