Characterizing Transverse Beam Dynamics at the APS Storage Ring Using a Dual-Sweep Streak Camera

Abstract

Abstract. We present a novel techniquefor characterizingtransverse beam dynamics using a dual-sweep streak camera. The camera is used to record the front view of successive beam bunches and/or successive turns of the bunches. This extension of the dual-sweep technique makesit possible to display non-repeatablebeam transverse motion in two fast and slow time scales of choice, and in a single shot. We present a study of a transverse multi-bunch instability in the AM storage ring. The positions, sizes, and shapes of 20 bunches (2.84 ns apart) in the train, in 3 to 14 successive turns (3.68 w apart) are recorded in a single image, providing rich information about the unstable beam. These include the amplitude of the oscillation(-0.0 at the head of the train and -2 mm towards the end of the train), the bunch-tobunch phase difference, and the significant transverse size growth withh the train. In the second example, the technique is used to characterize the injection-kicker induced beam motion, in support of the planned storagering top-up operation. By adjustingthe time scale of the dual sweep, it clearly shows the amplitude (d.8mm) and direction of tie kick, and the subsequent decoherence (-500 turns) and damping (-20 ms) of the stored beam. Since the storagering has an insertion device chamber with full vertical aperture of 5 mm, it is of special interestto track the vertical motion of the beam. An intensified gated camera was used for this purpose. The turn-by-turn x-y motion of a single-bunch beam was recorded and used as a diagnosticfor coupling correction. Images taken with uncorrectedcoupling will be presented. .

    Similar works