RESOURCE LAND LOSS AND FOREST VULNERABILITY IN THE CHESAPEAKE BAY WATERSHED 1

Abstract

ABSTRACT The contemporary pattern of urban development in industrialized countries is increasingly taking the form of low density, decentralized residential and commercial development. In the Chesapeake Bay watershed, which is located within the mid-Atlantic region of the United States, dispersed development patterns have been linked to habitat fragmentation and declining water quality. Our objectives were to document how this urbanization process has expanded throughout the watershed and to explore how lands comprising the natural resource base, particularly forests, have been replaced by a matrix of the built environment. We accomplished this by mapping impervious surface cover (houses, roads, etc.) across the ~168,000 km 2 area using a time series of satellite imagery. We calculated metrics of land use change and used these to estimate the loss of resource lands across the region. We conservatively estimate that 334 km 2 of forest, 888 km 2 of agriculture and 2 km 2 of wetlands have been converted to impervious surfaces between 1990 and 2000. We also used the time series to calibrate a spatial model of urban land use change, and forecasted future development patterns in Maryland out to 2030 under different policy scenarios. Using Maryland Department of Natural Resources' (DNR) Strategic Forest Lands Assessment (SFLA), which evaluates forest resources in terms of their economic and ecologic value, and Maryland's Green Infrastructure, which identifies ecologically valuable patches of contiguous forests and wetlands, we evaluated the vulnerability of natural resources in Maryland. Threats, associated with loss and fragmentation, were identified

    Similar works

    Full text

    thumbnail-image

    Available Versions