Improving Capacity and Energy Efficiency of Femtocell Based Cellular Network Through Cell Biasing

Abstract

Abstract-Future of cellular networks lies in heterogeneity. Heterogeneous cellular networks are characterized by overlay of low power nodes such as microcells, picocells, and femtocells along with traditional macrocell base stations. These nodes help operators to improve system capacity in cost effective manner while making the environment greener by reducing the carbon footprint. Research has shown that femtocells can be an effective solution to handle the increasing demands for indoor mobile traffic. However, low utilization of femtocell resources limits the gain obtained from their large scale deployment. Also, random placement of femtocells accumulate additional interference to macrocell users. In this paper, we introduce the concept of cell biasing for femtocells to improve user association and resource utilization. Our work analyses the effects of cell biasing on femtocell based cellular network and provides improvement in capacity and energy efficiency of the network through frequency reuse and subchannel power control. The obtained analytical results are verified through simulation

    Similar works