10 research outputs found

    A novel dual surface type-2 fuzzy logic controller for a micro robot

    Get PDF
    Over the last few years there has been an increasing interest in the area of type-2 fuzzy logic sets and systems in academic and industrial circles. Within robotic research the majority of type-2 fuzzy logic investigations has been centred on large autonomous mobile robots, where resource availability (memory and computing power) is not an issue. These large robots usually have a variation of a Unix operating system on board. This allows the implementation of complex fuzzy logic systems to control the motors. Specifically the implementation of interval and geometric type-2 fuzzy logic controllers is of interest as they are shown to outperform type-1 fuzzy logic controllers in uncertain environments. However when it comes to using micro robots it is not practical to use type-1 and type-2 fuzzy logic controllers, due to the lack of memory and the processor time needed to calculate a control output value. The choice of motor controller is usually either fixed pre-set values, a variable scaled value or a PID controller to generate wheel velocities. In this research novel ways of implementing type-1 and interval type-2 fuzzy logic controllers on micro robots with limited resources are investigated. The solution thatis being proposed is the use of pre-calculated 3D surfaces generated by an off-line Fuzzy Logic System covering the expected ranges of the input and output variables. The surfaces are then loaded into the memory of the micro robots and can be accessed by the motor controller. The aim of the research is to test if there is an advantage of using type-2 fuzzy logic controllers implemented as surfaces over type-1 and PID controllers on a micro robot with limited resources. Control surfaces were generated for both type-1 and average interval type-2 fuzzy logic controllers. Each control surface was then accessed using bilinear interpolation to provide the crisp output value that was used to control the motor. Previously when this method has been used a single surface was employed to hold the information. This thesis presents the novel approach of the dual surface type-2 fuzzy logic controller on micro robots. The lower and upper values that are averaged for the classic interval type-2 controller are generated as surfaces and installed on the micro robots. The advantage is that nuances and features of both the lower and upper surfaces are available to be exploited, rather than being lost due to the averaging process. Having conducted the experiments it is concluded that the best approach to controlling micro robots is to use fuzzy logic controllers over the classical PID controllers where ever possible. When fuzzy controllers are used then type-2 fuzzy controllers (dual or single surface) should be used over type-1 fuzzy controllers when applied as surfaces on micro robots. When a type-2 fuzzy controller is used then the novel dual surface type-2 fuzzy logic controller should be used over the classic average surface. The novel dual surface controller offers a dynamic, weighted, adaptive and superior response over all the other fuzzy controllers examined

    Learning of Type-2 Fuzzy Logic Systems using Simulated Annealing.

    Get PDF
    This thesis reports the work of using simulated annealing to design more efficient fuzzy logic systems to model problems with associated uncertainties. Simulated annealing is used within this work as a method for learning the best configurations of type-1 and type-2 fuzzy logic systems to maximise their modelling ability. Therefore, it presents the combination of simulated annealing with three models, type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and general type-2 fuzzy logic systems to model four bench-mark problems including real-world problems. These problems are: noise-free Mackey-Glass time series forecasting, noisy Mackey-Glass time series forecasting and two real world problems which are: the estimation of the low voltage electrical line length in rural towns and the estimation of the medium voltage electrical line maintenance cost. The type-1 and type-2 fuzzy logic systems models are compared in their abilities to model uncertainties associated with these problems. Also, issues related to this combination between simulated annealing and fuzzy logic systems including type-2 fuzzy logic systems are discussed. The thesis contributes to knowledge by presenting novel contributions. The first is a novel approach to design interval type-2 fuzzy logic systems using the simulated annealing algorithm. Another novelty is related to the first automatic design of general type-2 fuzzy logic system using the vertical slice representation and a novel method to overcome some parametrisation difficulties when learning general type-2 fuzzy logic systems. The work shows that interval type-2 fuzzy logic systems added more abilities to modelling information and handling uncertainties than type-1 fuzzy logic systems but with a cost of more computations and time. For general type-2 fuzzy logic systems, the clear conclusion that learning the third dimension can add more abilities to modelling is an important advance in type-2 fuzzy logic systems research and should open the doors for more promising research and practical works on using general type-2 fuzzy logic systems to modelling applications despite the more computations associated with it

    Circumventing the fuzzy type reduction for autonomous vehicle controller

    Get PDF
    Fuzzy type-2 controllers can easily deal with systems nonlinearity and utilise humans’ expertise to solve many complex control problems; they are also very good at processing uncertainty, which exists in many robotic systems, such as autonomous vehicles. However, their computational cost is high, especially at the type reduction stage. In this research, it is aimed to reduce the computation cost of the type reduction stage, thus to facilitate faster performance speed and increase the number of actions able to be operated in one microprocessor. Proposed here are adaptive integration principles with a binary successive search technique to locate the straight or semi-straight segments of a fuzzy set, thus to use them in achieving faster weighted average computation. This computation is very important because it runs frequently in many type reductions. A variable adaptation rate is suggested during the type reduction iterations to reduce the computation cost further. The influence of the proposed approaches on the fuzzy type-2 controller’s error has been mathematically analysed and then experimentally measured using a wall-following behaviour, which is the most important action for many autonomous vehicles. The resultant execution time-gain of the proposed technique has reached to 200%. This evaluated with respect to the execution time of the original, unmodified, type reduction procedure. This study develops a new accelerated version of the enhanced Karnik-Mendel type reducer by using better initialisations and better indexing scheme. The resulting performance time-gain reached 170%, with respect to the original version. A further cut in the type reduction time is achieved by proposing a One-Go type reduction procedure. This technique can reduce multiple sets altogether in one pass, thus eliminating much of the redundant calculations needed to carry out the reduction individually. All the proposed type reduction enhancements were evaluated in terms of their execution time-gain and performance error using every possible fuzzy firing level combination. Tests were then performed using a real autonomous vehicle, navigates in a relatively complex arena field with acute, right, obtuse, and reflex angled corners, to assure evaluating wide variety of operation conditions. A simplified state hold technique using Schmitt-trigger principles and dynamic sense pattern control was suggested and implemented to assure small rule base size and to obtain more accurate evaluation of the type reduction stages

    General type-2 radial basis function neural network: a data-driven fuzzy model

    Get PDF
    This paper proposes a new General Type-2 Radial Basis Function Neural Network (GT2-RBFNN) that is functionally equivalent to a GT2 Fuzzy Logic System (FLS) of either Takagi-Sugeno-Kang (TSK) or Mamdani type. The neural structure of the GT2-RBFNN is based on the alpha-planes representation, in which the antecedent and consequent part of each fuzzy rule uses GT2 Fuzzy Sets (FSs). To reduce the iterative nature of the Karnik-Mendel algorithm, the Enhaned-Karnik-Mendel (EKM) type-reduction and three popular direct-defuzzification methods, namely the 1) Nie-Tan approach (NT), the 2) Wu-Mendel uncertain bounds method (WU) and the 3) Biglarbegian-Melek-Mendel algorithm (BMM) are employed. For that reason, this paper provides four different neural structures of the GT2-RBFNN and their structural and parametric optimisation. Such optimisation is a two-stage methodology that first implements an Iterative Information Granulation approach to estimate the antecedent parameters of each fuzzy rule. Secondly, each consequent part and the fuzzy rule base of the GT2-RBFNN is trained and optimised using an Adaptive Gradient Descent method (AGD) respectively. Several benchmark data sets, including a problem of identification of a nonlinear system and a chaotic time series are considered. The reported comparative analysis of experimental results is used to evaluate the performance of the suggested GT2 RBFNN with respect to other popular methodologies

    Modelling FTIR spectral sata with Type-I and Type-II fuzzy sets for breast cancer grading

    Get PDF
    Breast cancer is one of the most frequently occurring cancers amongst women throughout the world. After the diagnosis of the disease, monitoring its progression is important in predicting the chances of long term survival of patients. The Nottingham Prognostic Index (NPI) is one of the most common indices used to categorise the patients into different groups depending upon the severity of the disease. One of the key factors of this index is cancer grade which is determined by pathologists who examine cell samples under a microscope. This manual method has a higher chance of false classification and may lead to incorrect treatment of patients. There is a need to develop automated methods that employ advanced computational methods to help pathologists in making a decision regarding the classification of breast cancer grade. Fourier transform infra-red spectroscopy (FTIR) is one of the relatively new techniques that has been used for diagnosis of various cancer types with advanced computational methods in the literature. In this thesis we examine the use of advanced fuzzy methods with the FTIR spectral data sets to develop a model prototype that can help clinicians with breast cancer grading. Initial work is focussed on using the commonly used clustering algorithms k-means and fuzzy c-means with principal component analysis on different cancer spectral data sets to explore the complexities within them. After that, a novel model based on Type-II fuzzy logic is developed for use on a complex breast cancer FTIR spectral data set that can help clinicians classify breast cancer grades. The data set used for the purpose consists of multiple cases of each grade. We consider two types of uncertainty, one within the spectra of a single case of a grade (intra -case) and other when comparing it with other cases of same grade (inter-case). Features have been extracted in terms of interval data from various peaks and troughs. The interval data from the features has been used to create Type-I fuzzy sets for each case. After that the Type-I fuzzy sets are combined to create zSlices based General Type-II fuzzy sets for each feature for each grade. The created benchmark fuzzy sets are then used as prototypes for classification of unseen spectral data. Type-I fuzzy sets are created for unseen spectral data and then compared against the benchmark prototype Type-II fuzzy sets for each grade using a similarity measure. The best match based on the calculated similarity scores is assigned as the resultant grade. The novel model is tested on an independent spectral data set of oral cancer patients. Results indicate that the model was able to successfully construct prototype fuzzy sets for the data set, and provide in-depth information regarding the complexities of the data set as well as helping in classification of the data

    Modelling FTIR spectral sata with Type-I and Type-II fuzzy sets for breast cancer grading

    Get PDF
    Breast cancer is one of the most frequently occurring cancers amongst women throughout the world. After the diagnosis of the disease, monitoring its progression is important in predicting the chances of long term survival of patients. The Nottingham Prognostic Index (NPI) is one of the most common indices used to categorise the patients into different groups depending upon the severity of the disease. One of the key factors of this index is cancer grade which is determined by pathologists who examine cell samples under a microscope. This manual method has a higher chance of false classification and may lead to incorrect treatment of patients. There is a need to develop automated methods that employ advanced computational methods to help pathologists in making a decision regarding the classification of breast cancer grade. Fourier transform infra-red spectroscopy (FTIR) is one of the relatively new techniques that has been used for diagnosis of various cancer types with advanced computational methods in the literature. In this thesis we examine the use of advanced fuzzy methods with the FTIR spectral data sets to develop a model prototype that can help clinicians with breast cancer grading. Initial work is focussed on using the commonly used clustering algorithms k-means and fuzzy c-means with principal component analysis on different cancer spectral data sets to explore the complexities within them. After that, a novel model based on Type-II fuzzy logic is developed for use on a complex breast cancer FTIR spectral data set that can help clinicians classify breast cancer grades. The data set used for the purpose consists of multiple cases of each grade. We consider two types of uncertainty, one within the spectra of a single case of a grade (intra -case) and other when comparing it with other cases of same grade (inter-case). Features have been extracted in terms of interval data from various peaks and troughs. The interval data from the features has been used to create Type-I fuzzy sets for each case. After that the Type-I fuzzy sets are combined to create zSlices based General Type-II fuzzy sets for each feature for each grade. The created benchmark fuzzy sets are then used as prototypes for classification of unseen spectral data. Type-I fuzzy sets are created for unseen spectral data and then compared against the benchmark prototype Type-II fuzzy sets for each grade using a similarity measure. The best match based on the calculated similarity scores is assigned as the resultant grade. The novel model is tested on an independent spectral data set of oral cancer patients. Results indicate that the model was able to successfully construct prototype fuzzy sets for the data set, and provide in-depth information regarding the complexities of the data set as well as helping in classification of the data

    Fuzzy Transfer Learning

    Get PDF
    The use of machine learning to predict output from data, using a model, is a well studied area. There are, however, a number of real-world applications that require a model to be produced but have little or no data available of the specific environment. These situations are prominent in Intelligent Environments (IEs). The sparsity of the data can be a result of the physical nature of the implementation, such as sensors placed into disaster recovery scenarios, or where the focus of the data acquisition is on very defined user groups, in the case of disabled individuals. Standard machine learning approaches focus on a need for training data to come from the same domain. The restrictions of the physical nature of these environments can severely reduce data acquisition making it extremely costly, or in certain situations, impossible. This impedes the ability of these approaches to model the environments. It is this problem, in the area of IEs, that this thesis is focussed. To address complex and uncertain environments, humans have learnt to use previously acquired information to reason and understand their surroundings. Knowledge from different but related domains can be used to aid the ability to learn. For example, the ability to ride a road bicycle can help when acquiring the more sophisticated skills of mountain biking. This humanistic approach to learning can be used to tackle real-world problems where a-priori labelled training data is either difficult or not possible to gain. The transferral of knowledge from a related, but differing context can allow for the reuse and repurpose of known information. In this thesis, a novel composition of methods are brought together that are broadly based on a humanist approach to learning. Two concepts, Transfer Learning (TL) and Fuzzy Logic (FL) are combined in a framework, Fuzzy Transfer Learning (FuzzyTL), to address the problem of learning tasks that have no prior direct contextual knowledge. Through the use of a FL based learning method, uncertainty that is evident in dynamic environments is represented. By combining labelled data from a contextually related source task, and little or no unlabelled data from a target task, the framework is shown to be able to accomplish predictive tasks using models learned from contextually different data. The framework incorporates an additional novel five stage online adaptation process. By adapting the underlying fuzzy structure through the use of previous labelled knowledge and new unlabelled information, an increase in predictive performance is shown. The framework outlined is applied to two differing real-world IEs to demonstrate its ability to predict in uncertain and dynamic environments. Through a series of experiments, it is shown that the framework is capable of predicting output using differing contextual data

    An Explainable Artificial Intelligence Approach Based on Deep Type-2 Fuzzy Logic System

    Get PDF
    Artificial intelligence (AI) systems have benefitted from the easy availability of computing power and the rapid increase in the quantity and quality of data which has led to the widespread adoption of AI techniques across a wide variety of fields. However, the use of complex (or Black box) AI systems such as Deep Neural Networks, support vector machines, etc., could lead to a lack of transparency. This lack of transparency is not specific to deep learning or complex AI algorithms; other interpretable AI algorithms such as kernel machines, logistic regressions, decision trees, or rules-based algorithms can also become difficult to interpret for high dimensional inputs. The lack of transparency or explainability reduces the effectiveness of AI models in regulated applications (such as medical, financial, etc.), where it is essential to explain the model operation and how it arrived at a given prediction. The need for explainability in AI has led to a new line of research that focuses on developing Explainable AI techniques. There are three main avenues of research that are being explored to achieve explainability; first, Deep Explanations, which involves the modification of existing Deep learning models to add explainability. The methods proposed to do Deep explanations generally provide details about all the input features that affect the output, generally in a visual format as there might be a large number of features. This type of explanation is useful for tasks such as image recognition, but in other tasks, it might be hard to distinguish the most important features. Second, Model induction, which involves methods that are model agnostic, but these methods might not be suitable for use in regulated applications. The third method is to use existing interpretable models such as decision trees, fuzzy logic, etc., but the problem with them is that they can also become opaque for high dimensional data. Hence, this thesis presents a novel AI system by combining the predictive power of Deep Learning with the interpretability of Interval Type-2 Fuzzy Logic Systems. The advantages of such a system are, first, the ability to be trained via labelled and unlabelled data (i.e., mixing supervised and unsupervised learning). Second, having embedded feature selection abilities (i.e., can be trained by hundreds and thousands of inputs with no need for feature selection) while delivering explainable models with small rules bases composed of short rules to maximize the model’s interpretability. The proposed model was developed with data from British Telecom (BT). It achieved comparable performance to the deep models such as Stacked Autoencoder (SAE) and Convolution Neural Networks (CNN). In categorical datasets, the model outperformed the SAE by 2%, performed within 2-3% of the CNN and outperformed Multi-Layer Perceptron (MLP) and IT2FLS by 4%. In the regression datasets, the model performed slightly worse than the SAE, MLP and CNN models, but it outperformed the IT2FLS with a 15% lower error. The proposed model achieved excellent interpretability in a survey where it was rated within 2% of the highly interpretable IT2FLS. It was also rated 20% and 17% better than Deep learning XAI tools LIME and SHAP, respectively. The proposed model shows a small loss in performance for significantly higher interpretability, making it a suitable replacement for the other AI models in applications with many features where interpretability is paramount
    corecore