100 research outputs found

    Energy efficient adaptation engines for android applications

    Get PDF
    Context The energy consumption of mobile devices is increasing due to the improvement in their components (e.g., better processors, larger screens). Although the hardware consumes the energy, the software is responsible for managing hardware resources such as the camera software and its functionality, and therefore, affects the energy consumption. Energy consumption not only depends on the installed code, but also on the execution context (environment, devices status) and how the user interacts with the application. Objective In order to reduce the energy consumption based on user behavior, it is necessary to dynamically adapt the application. However, the adaptation mechanism also consumes a certain amount of energy in itself, which may lead to an important increase in the energy expenditure of the application in comparison with the benefits of the adaptation. Therefore, this footprint must be measured and compared with the benefit obtained. Method In this paper, we (1) determine the benefits, in terms of energy consumption, of dynamically adapting mobile applications, based on user behavior; and (2) advocate the most energy-efficient adaptation mechanism. We provide four different implementations of a proposed adaptation model and measure their energy consumption. Results The proposed adaptation engines do not increase the energy consumption when compared to the benefits of the adaptation, which can reduce the energy consumption by up to 20%. Conclusion The adaptation engines proposed in this paper can decrease the energy consumption of the mobile devices based on user behavior. The overhead introduced by the adaptation engines is negligible in comparison with the benefits obtained by the adaptation.Junta de Andalucía MAGIC P12-TIC1814Ministerio de Economía y Competitividad TIN2015-64841-RMinisterio de Ciencia, Innovación y Universidades TIN2017-90644-REDTMinisterio de Ciencia, Innovación y Universidades RTI2018-099213-B-I00Universidad de Málaga LEIA UMA18-FEDERJA-15

    MobiPADS: a reflective middleware for context-aware mobile computing

    Get PDF
    distributed computing services that essentially abstract the underlying network services to a monolithic “black box. ” In a mobile operating environment, the fundamental assumption of middleware abstracting a unified distributed service for all types of applications operating over a static network infrastructure is no longer valid. In particular, mobile applications are not able to leverage the benefits of adaptive computing to optimize its computation based on current contextual situations. In this paper, we introduce the Mobile Platform for Actively Deployable Service (MobiPADS) system. MobiPADS is designed to support context-aware processing by providing an executing platform to enable active service deployment and reconfiguration of the service composition in response to environments of varying contexts. Unlike most mobile middleware, MobiPADS supports dynamic adaptation at both the middleware and application layers to provide flexible configuration of resources to optimize the operations of mobile applications. Within the MobiPADS system, services (known as mobilets) are configured as chained service objects to provide augmented services to the underlying mobile applications so as to alleviate the adverse conditions of a wireless environment. Index Terms—Middleware, mobile applications, mobile computing support services, mobile environments.

    Electrotactile Communication via Matrix Electrode Placed on the Torso Using Fast Calibration, and Static vs. Dynamic Encoding

    Get PDF
    Electrotactile stimulation is a technology that reproducibly elicits tactile sensations and can be used as an alternative channel to communicate information to the user. The presented work is a part of an effort to develop this technology into an unobtrusive communication tool for first responders. In this study, the aim was to compare the success rate (SR) between discriminating stimulation at six spatial locations (static encoding) and recognizing six spatio-temporal patterns where pads are activated sequentially in a predetermined order (dynamic encoding). Additionally, a procedure for a fast amplitude calibration, that includes a semi-automated initialization and an optional manual adjustment, was employed and evaluated. Twenty subjects, including twelve first responders, participated in the study. The electrode comprising the 3 × 2 matrix of pads was placed on the lateral torso. The results showed that high SRs could be achieved for both types of message encoding after a short learning phase; however, the dynamic approach led to a statistically significant improvement in messages recognition (SR of 93.3%), compared to static stimulation (SR of 83.3%). The proposed calibration procedure was also effective since in 83.8% of the cases the subjects did not need to adjust the stimulation amplitude manually

    Dynamic probabilistic routing discovery and broadcast schemes for high mobility Ad-hoc networks

    Get PDF
    Mobile Ad-hoc Networks (MANETs) have lately come to be widely used in everyday applications. Their usability and capability have attracted the interest of both commercial organizations and research communities. Recently, the Vehicular Ad-hoc Network (VANET) is a promising application of MANETs. It has been designed to offer a high level of safety for the drivers in order to minimize a number of roads accidents. Broadcast communication in MANETs and VANETs, is essential for a wide range of important services such as propagating safety messages and Route REQuest (RREQ) packets. Routing is one of the most challenging issues in MANETs and VANETs, which requires high efficient broadcast schemes.The primitive and widely deployed method of implementing the broadcast is simple ‘flooding’. In this approach, each node ‘floods’ the network, with the message that it has received, in order to guarantee that other nodes in the network have been successfully reached. Although flooding is simple and reliable, it consumes a great deal of network resources, since it swamps the network with many redundant packets, leading to collisions contention and huge competition, while accessing the same shared wireless medium. This phenomenon is well-known in MANETs, and is called the Broadcast Storm Problem.The first contribution of this thesis is to design and develop an efficient distributed route discovery scheme that is implemented based on the probabilistic concept, in order to suppress the broadcast storm problem. The proposed scheme is called a Probabilistic Disturbed Route Discovery scheme (PDRD), and it prioritizes the routing operation at each node with respect to different network parameters such as the number of duplicated packets, and local and global network density. The performance of the proposed scheme PDRD has been examined in MANETs, in terms of a number of important metrics such as RREQ rebroadcast number and RREQ collision number. Experimental results confirm the superiority of the proposed scheme over its counterparts, including the Hybrid Probabilistic-Based Counter (HPC) scheme and the Simple Flooding (SF) scheme.The second contribution of this thesis is to tackle the frequent link breakages problem in MANETs. High mobility nodes often have frequent link breakages; this potentially leads to re-discovery of the same routes. Although different probabilistic solutions have been suggested to optimize the routing in MANETs, to the best of our knowledge they have not focused on the problem of frequent link breakages and link stability.IIUnlike other existing probabilistic solutions, this thesis proposes a new Velocity Aware-Probabilistic (VAP) route discovery scheme, which can exclude unstable nodes from constructing routes between source and destination. The main idea behind the proposed schemes is to use velocity vector information to determine the stable nodes and unstable nodes. A proper rebroadcast probability and timer are set dynamically according to the node stability. Simulation results confirm that the new proposed scheme has much better performance in terms of end-to-end delay, RREQ rebroadcast number and link stability.The routing in VANETs is very critical and challenging in terms of the number of broken links and packet overheads. This is mainly due to the fast vehicles’ speed and different vehicles’ movement directions. A large number of routing protocols such as Ad-hoc On-demand Distance Vector (AODV) and Dynamic Source Routing (DSR) have been proposed to deal with the routing in MANETs. However, these protocols are not efficient and cannot be applied directly to VANETs context due to its different characteristics. Finally toward this end, this thesis proposes new probabilistic and timer probabilistic routing schemes in order to improve the routing in VANETs. The main aim of the proposed schemes is to set up the most stable routes to avoid any possible link breakage. These schemes also enhance the overall network performance by suppressing the broadcast storm problem, which occurs during the route discovery process. The proposed schemes also make AODV protocol suitable and applicable for VANETs. Simulation results show the benefit of the new routing schemes in terms of a number of metrics such as RREQ rebroadcast number, link stability and end-to-end delay

    Securing in-memory processors against Row Hammering Attacks

    Get PDF
    Modern applications on general purpose processors require both rapid and power-efficient computing and memory components. As applications continue to improve, the demand for high speed computation, fast-access memory, and a secure platform increases. Traditional Von Neumann Architectures split the computing and memory units, causing both latency and high power-consumption issues; henceforth, a hybrid memory processing system is proposed, known as in-memory processing. In-memory processing alleviates the delay of computation and minimizes power-consumption; such improvements saw a 14x speedup improvement, 87\% fewer power consumption, and appropriate linear scalability versus performance. Several applications of in-memory processing include data-driven applications such as Artificial Intelligence (AI), Convolutional and Deep Neural Networks (CNNs/DNNs). However, processing-in-memory can also suffer from a security and reliability issue known as the Row Hammer Security Bug; this security exploit flips bits within memory without access, leading to error injection, system crashes, privilege separation, and total hijack of a system; the novel Row Hammer security bug can negatively impact the accuracies of CNNs and DNNs via flipping the bits of stored weight values without direct access. Weights of neural networks are stored in a variety of data patterns, resulting in either a solid (all 1s or all 0s), checkered (alternating 1s and 0s in both rows and columns), row-stripe (alternating 1s and 0s in rows), or column-striped (alternating 1s and 0s in columns) manner; the row-stripe data pattern exhibits the largest likelihood of a Row Hammer attack, resulting in the accuracies of neural networks dropping over 30\%. A row-stripe avoidance coding scheme is proposed to reduce the probability of the Row Hammer Attack occurring within neural networks. The coding scheme encodes the binary portion of a weight in a CNN or DNN to reduce the chance of row-stripe data patterns, overall reducing the likelihood of a Row Hammer attack occurring while improving the overall security of the in-memory processing system

    A survey on Bluetooth multi-hop networks

    Get PDF
    Bluetooth was firstly announced in 1998. Originally designed as cable replacement connecting devices in a point-to-point fashion its high penetration arouses interest in its ad-hoc networking potential. This ad-hoc networking potential of Bluetooth is advertised for years - but until recently no actual products were available and less than a handful of real Bluetooth multi-hop network deployments were reported. The turnaround was triggered by the release of the Bluetooth Low Energy Mesh Profile which is unquestionable a great achievement but not well suited for all use cases of multi-hop networks. This paper surveys the tremendous work done on Bluetooth multi-hop networks during the last 20 years. All aspects are discussed with demands for a real world Bluetooth multi-hop operation in mind. Relationships and side effects of different topics for a real world implementation are explained. This unique focus distinguishes this survey from existing ones. Furthermore, to the best of the authors’ knowledge this is the first survey consolidating the work on Bluetooth multi-hop networks for classic Bluetooth technology as well as for Bluetooth Low Energy. Another individual characteristic of this survey is a synopsis of real world Bluetooth multi-hop network deployment efforts. In fact, there are only four reports of a successful establishment of a Bluetooth multi-hop network with more than 30 nodes and only one of them was integrated in a real world application - namely a photovoltaic power plant. © 2019 The Author

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse
    corecore