31,884 research outputs found

    Detection of genetic diversity among Indian strains of _Xanthomonas campestris_ pv. _mangiferaeindicae_ using PCR-RAPD

    Get PDF
    The randomly amplified polymorphic DNA (RAPD) technique was used to investigate the genetic diversity in 6 strains of _Xanthomonas campestris_ pv. _mangiferaeindicae_ (_Xcmi_), the causal pathogen of mango bacterial canker disease (MBCD). The RAPD analysis was also intended to identify molecular markers, specific to the species to develop PCR-based markers for detection of _Xcmi_ in mango field and planting materials. Twenty RAPD primers (CP 1-CP 20) were evaluated to establish molecular characters and genetic variability in the genome of _Xcmi_. Among these, only 4 were found efficient for development of reproducible banding pattern. It has been observed that the largest and smallest amplified RAPD products were of 2.036 and 0.201 kbp. A total of 136 bands were scored against 6 strains of _Xcmi_. There was 7.66 per cent polymorphism in individual isolates which indicates significant polymorphism among the evaluated strains, with mean difference of 0.33 (_Xcmi_ 2 vs. _Xcmi_ 8) and 0.29 (_Xcmi_ 10 vs. _Xcmi_ 12). However, the single linkage euclidean distances were statistically significant (P>0.05), i.e., 0.58. The markers CP 5, 10, 16 and 19 were amplified in all the strains with polymorphic alleles, which indicates that these markers could be used for rapid detection of genetic variability in _Xcmi_ strains

    Occurrence and diversity of Xanthomonas campestris pv. campestris in vegetable brassica fields in Nepal

    Get PDF
    Black rot caused by Xanthomonas campestris pv. campestris was found in 28 sampled cabbage fields in five major cabbage-growing districts in Nepal in 2001 and in four cauliflower fields in two districts and a leaf mustard seed bed in 2003. Pathogenic X. campestris pv. campestris strains were obtained from 39 cabbage plants, 4 cauliflower plants, and 1 leaf mustard plant with typical lesions. Repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) using repetitive extragenic palindromic, enterobacterial repetitive intergenic consensus, and BOX primers was used to assess the genetic diversity. Strains were also race typed using a differential series of Brassica spp. Cabbage strains belonged to five races (races 1, 4, 5, 6, and 7), with races 4, 1, and 6 the most common. All cauliflower strains were race 4 and the leaf mustard strain was race 6. A dendrogram derived from the combined rep-PCR profiles showed that the Nepalese X. campestris pv. campestris strains clustered separately from other Xanthomonas spp. and pathovars. Race 1 strains clustered together and strains of races 4, 5, and 6 were each split into at least two clusters. The presence of different races and the genetic variability of the pathogen should be considered when resistant cultivars are bred and introduced into regions in Nepal to control black rot of brassicas

    A new multi locus variable number of tandem repeat analysis scheme for epidemiological surveillance of Xanthomonas vasicola pv. musacearum, the plant pathogen causing bacterial wilt on banana and enset

    Get PDF
    Xanthomonas vasicola pv. musacearum (Xvm) which causes Xanthomonas wilt (XW) on banana (Musa accuminata x balbisiana) and enset (Ensete ventricosum), is closely related to the species Xanthomonas vasicola that contains the pathovars vasculorum (Xvv) and holcicola (Xvh), respectively pathogenic to sugarcane and sorghum. Xvm is considered a monomorphic bacterium whose intra-pathovar diversity remains poorly understood. With the sudden emergence of Xvm within east and central Africa coupled with the unknown origin of one of the two sublineages suggested for Xvm, attention has shifted to adapting technologies that focus on identifying the origin and distribution of the genetic diversity within this pathogen. Although microbiological and conventional molecular diagnostics have been useful in pathogen identification. Recent advances have ushered in an era of genomic epidemiology that aids in characterizing monomorphic pathogens. To unravel the origin and pathways of the recent emergence of XW in Eastern and Central Africa, there was a need for a genotyping tool adapted for molecular epidemiology. Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA) is able to resolve the evolutionary patterns and invasion routes of a pathogen. In this study, we identified microsatellite loci from nine published Xvm genome sequences. Of the 36 detected microsatellite loci, 21 were selected for primer design and 19 determined to be highly typeable, specific, reproducible and polymorphic with two- to four- alleles per locus on a sub-collection. The 19 markers were multiplexed and applied to genotype 335 Xvm strains isolated from seven countries over several years. The microsatellite markers grouped the Xvm collection into three clusters; with two similar to the SNP-based sublineages 1 and 2 and a new cluster 3, revealing an unknown diversity in Ethiopia. Five of the 19 markers had alleles present in both Xvm and Xanthomonas vasicola pathovars holcicola and vasculorum, supporting the phylogenetic closeliness of these three pathovars. Thank to the public availability of the haplotypes on the MLVABank database, this highly reliable and polymorphic genotyping tool can be further used in a transnational surveillance network to monitor the spread and evolution of XW throughout Africa.. It will inform and guide management of Xvm both in banana-based and enset-based cropping systems. Due to the suitability of MLVA-19 markers for population genetic analyses, this genotyping tool will also be used in future microevolution studies

    Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops

    Get PDF
    Background Xanthomonas campestris pv. campestris (Xcc) (Pammel) Dowson is a Gram-negative bacterium that causes black rot, the most important disease of vegetable brassica crops worldwide. Intensive molecular investigation of Xcc is gaining momentum and several whole genome sequences are available. Taxonomy Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadacea; Genus Xanthomonas; Species X. campestris. Host range and symptoms Xcc can cause disease in a large number of species of Brassicaceae (ex-Cruciferae), including economically important vegetable Brassica crops and a number of other cruciferous crops, ornamentals and weeds, including the model plant Arabidopsis thaliana. Black rot is a systemic vascular disease. Typical disease symptoms include V-shaped yellow lesions starting from the leaf margins and blackening of the veins. Race structure, pathogenesis and epidemiology Collections of Xcc isolates have been differentiated into physiological races based on the response of several brassica species lines. Black rot is a seed-borne disease. The disease is favoured by warm, humid conditions and can spread rapidly from rain dispersal and irrigation water. Disease control The control of black rot is difficult and relies on the use of pathogen-free planting material and the elimination of other potential inoculum sources (infected crop debris and cruciferous weeds). Major gene resistance is very rare in B. oleracea (brassica C genome). Resistance is more readily available in other species, including potentially useful sources of broad-spectrum resistance in B. rapa and B. carinata (A and BC genomes, respectively) and in the wild relative A. thaliana. Genome The reference genomes of three isolates have been released. The genome consists of a single chromosome of approximately 5 100 000 bp, with a GC content of approximately 65% and an average predicted number of coding DNA sequences (CDS) of 4308. Important genes identified Three different secretion systems have been identified and studied in Xcc. The gene clusters xps and xcs encode a type II secretion system and xps genes have been linked to pathogenicity. The role of the type IV secretion system in pathogenicity is still uncertain. The hrp gene cluster encodes a type III secretion system that is associated with pathogenicity. An inventory of candidate effector genes has been assembled based on homology with known effectors. A range of other genes have been associated with virulence and pathogenicity, including the rpf, gum and wxc genes involved in the regulation of the synthesis of extracellular degrading enzymes, xanthan gum and lipopolysaccharides

    Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the Xanthomonadaceae.

    Get PDF
    The Xanthomonadaceae family consists of species of non-pathogenic and pathogenic γ-proteobacteria that infect different hosts, including humans and plants. In this study, we performed a comparative analysis using 69 fully sequenced genomes belonging to this family, with a focus on identifying proteins enriched in phytopathogens that could explain the lifestyle and the ability to infect plants. Using a computational approach, we identified seven phytopathogen-enriched protein families putatively secreted by type II secretory system: PheA (CM-sec), LipA/LesA, VirK, and four families involved in N-glycan degradation, NixE, NixF, NixL, and FucA1. In silico and phylogenetic analyses of these protein families revealed they all have orthologs in other phytopathogenic or symbiotic bacteria, and are involved in the modulation and evasion of the immune system. As a proof of concept, we performed a biochemical characterization of LipA from Xac306 and verified that the mutant strain lost most of its lipase and esterase activities and displayed reduced virulence in citrus. Since this study includes closely related organisms with distinct lifestyles and highlights proteins directly related to adaptation inside plant tissues, novel approaches might use these proteins as biotechnological targets for disease control, and contribute to our understanding of the coevolution of plant-associated bacteria
    corecore