553,016 research outputs found

    Extended range X-ray telescope

    Get PDF
    An X-ray telescope system is described which is comprised of a tubular mount having a collecting region remote from the one axial end. A soft X-ray/XUV subsystem associated with the collecting region directs only relatively soft, near on-axis X-rays/XUV radiation incident on a first portion of the collecting region into a first detector sensitive to relatively soft X-rays/XUV radiation. A hard X-ray subsystem associated with the collecting region directs only relatively hard near on-axis X-rays incident on a second portion of the collecting region into a second detector sensitive to relatively hard X-rays

    Comparison of X-ray and gamma-ray dose-response curves for pink somatic mutations in Tradescantia clone 02

    Get PDF
    Microdosimetric data indicate that the mean specific energy,zeta, produced by individual charged particles from X rays and gamma rays is different for the two radiation qualities by nearly a factor of two. In order to test whether this influences the initial, linear component in the dose-effect relations, a comparison was made between dose-response curves for pink somatic mutations inTradescantia clone 02 stamen hairs following X and gamma irradiations. Absorbed doses ranged from 2.66 to 300 rad. The results are in agreement with predictions made on the basis of microdosimetric data. At low doses gamma rays are substantially less effective than X rays. The RBE of gamma rays vs. X rays at low doses was approximately 0.6, a value lower than those usually reported in other experimental systems

    Absorption of high-energy gamma rays in Cygnus X-3

    Get PDF
    The microquasar Cygnus X-3 was detected at high energies by the gamma-ray space telescopes AGILE and Fermi. The gamma-ray emission is transient, modulated with the orbital period and seems related to major radio flares, i.e. to the relativistic jet. The GeV gamma-ray flux can be substantially attenuated by internal absorption with the ambient X-rays. In this study, we examine quantitatively the effect of pair production in Cygnus X-3 and put constraints on the location of the gamma-ray source. Cygnus X-3 exhibits complex temporal and spectral patterns in X-rays. During gamma-ray flares, the X-ray emission can be approximated by a bright disk black body component and a non-thermal tail extending in hard X-rays, possibly related to a corona above the disk. We calculate numerically the exact optical depth for gamma rays above a standard accretion disk. Emission and absorption in the corona are also investigated. GeV gamma rays are significantly absorbed by soft X-rays emitted from the inner parts of the accretion disk. The absorption pattern is complex and anisotropic. Isotropization of X-rays due to Thomson scattering in the companion star wind tends to increase the gamma-ray opacity. Gamma rays from the corona suffer from strong absorption by photons from the disk and cannot explain the observed high-energy emission, unless the corona is unrealistically extended. The lack of absorption feature in the GeV emission indicates that high-energy gamma rays should be located at a minimum distance ~10^8-10^10 cm from the compact object. The gamma-ray emission is unlikely to have a coronal origin.Comment: 11 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    X-ray source uses interchangeable target anodes to vary X-ray wavelength

    Get PDF
    Compact laboratory X ray tube generates X rays of various wavelengths by using interchangeable target anodes. The wavelength of the X rays depends on the metal from which the anode is made

    Reionization by Hard Photons: I. X-rays from the First Star Clusters

    Full text link
    Observations of the Ly-alpha forest at z~3 reveal an average metallicity Z~0.01 Z_solar. The high-redshift supernovae that polluted the IGM also accelerated relativistic electrons. Since the energy density of the CMB scales as (1+z)^4, at high redshift these electrons cool via inverse Compton scattering. Thus, the first star clusters emit X-rays. Unlike stellar UV ionizing photons, these X-rays can escape easily from their host galaxies. This has a number of important physical consequences: (i) Due to their large mean free path, these X-rays can quickly establish a universal ionizing background and partially reionize the universe in a gradual, homogeneous fashion. If X-rays formed the dominant ionizing background, the universe would have more closely resembled a single-phase medium, rather than a two-phase medium. (ii) X-rays can reheat the universe to higher temperatures than possible with UV radiation. (iii) X-rays counter the tendency of UV radiation to photo-dissociate H2, an important coolant in the early universe, by promoting gas phase H2 formation. The X-ray production efficiency is calibrated to local observations of starburst galaxies, which imply that ~10% of the supernova energy is converted to X-rays. While direct detection of sources in X-ray emission is difficult, the presence of relativistic electrons at high redshift and thus a minimal level of X-ray emission may be inferred by synchrotron emission observations with the Square Kilometer Array. These sources may constitute a significant fraction of the unresolved hard X-ray background, and can account for both the shape and amplitude of the gamma-ray background. This paper discusses the existence and observability of high-redshift X-ray sources, while a companion paper models the detailed reionization physics and chemistry.Comment: Final version accepted by ApJ. 32 pages, 3 figure

    X-Ray Emission from Jupiter, Saturn, and Earth: A Short Review

    Get PDF
    Jupiter, Saturn, and Earth - the three planets having dense atmosphere and a well developed magnetosphere - are known to emit X-rays. Recently, Chandra X-ray Observatory has observed X-rays from these planets, and XMM-Newton has observed them from Jupiter and Saturn. These observations have provided improved morphological, temporal, and spectral characteristics of X-rays from these planets. Both auroral and non-auroral (low-latitude) 'disk' X-ray emissions have been observed on Earth and Jupiter. X-rays have been detected from Saturn's disk, but no convincing evidence for X-ray aurora on Saturn has been observed. The non-auroral disk X-ray emissions from Jupiter, Saturn, and Earth, are mostly produced due to scattering of solar X-rays. X-ray aurora on Earth is mainly generated via bremsstrahlung from precipitating electrons and on Jupiter via charge exchange of highlyionized energetic heavy ions precipitating into the polar atmosphere. Recent unpublished work suggests that at higher (>2 keV) energies electron bremsstrahlung also plays a role in Jupiter's X-ray aurora. This paper summarizes the recent results of X-ray observations on Jupiter, Saturn, and Earth mainly in the soft energy (~0.1-2.0 keV) band and provides a comparative overview.Comment: 17 pages, 12 figure

    Solar X-ray spectrum reproduced in vacuum

    Get PDF
    Desired low energy X rays are produced by modifying commercial ion tubes and combining them with standard power supplies and control circuitry. These X rays have less deviation from the solar X ray spectrum in energy and intensity
    corecore