1,577 research outputs found

    Quantum Property Testing

    Get PDF
    A language L has a property tester if there exists a probabilistic algorithm that given an input x only asks a small number of bits of x and distinguishes the cases as to whether x is in L and x has large Hamming distance from all y in L. We define a similar notion of quantum property testing and show that there exist languages with quantum property testers but no good classical testers. We also show there exist languages which require a large number of queries even for quantumly testing

    Every locally characterized affine-invariant property is testable

    Full text link
    Let F = F_p for any fixed prime p >= 2. An affine-invariant property is a property of functions on F^n that is closed under taking affine transformations of the domain. We prove that all affine-invariant property having local characterizations are testable. In fact, we show a proximity-oblivious test for any such property P, meaning that there is a test that, given an input function f, makes a constant number of queries to f, always accepts if f satisfies P, and rejects with positive probability if the distance between f and P is nonzero. More generally, we show that any affine-invariant property that is closed under taking restrictions to subspaces and has bounded complexity is testable. We also prove that any property that can be described as the property of decomposing into a known structure of low-degree polynomials is locally characterized and is, hence, testable. For example, whether a function is a product of two degree-d polynomials, whether a function splits into a product of d linear polynomials, and whether a function has low rank are all examples of degree-structural properties and are therefore locally characterized. Our results depend on a new Gowers inverse theorem by Tao and Ziegler for low characteristic fields that decomposes any polynomial with large Gowers norm into a function of low-degree non-classical polynomials. We establish a new equidistribution result for high rank non-classical polynomials that drives the proofs of both the testability results and the local characterization of degree-structural properties

    Property Testing via Set-Theoretic Operations

    Get PDF
    Given two testable properties P1\mathcal{P}_{1} and P2\mathcal{P}_{2}, under what conditions are the union, intersection or set-difference of these two properties also testable? We initiate a systematic study of these basic set-theoretic operations in the context of property testing. As an application, we give a conceptually different proof that linearity is testable, albeit with much worse query complexity. Furthermore, for the problem of testing disjunction of linear functions, which was previously known to be one-sided testable with a super-polynomial query complexity, we give an improved analysis and show it has query complexity O(1/\eps^2), where \eps is the distance parameter.Comment: Appears in ICS 201

    Testing Linear-Invariant Non-Linear Properties

    Get PDF
    We consider the task of testing properties of Boolean functions that are invariant under linear transformations of the Boolean cube. Previous work in property testing, including the linearity test and the test for Reed-Muller codes, has mostly focused on such tasks for linear properties. The one exception is a test due to Green for "triangle freeness": a function f:\cube^{n}\to\cube satisfies this property if f(x),f(y),f(x+y)f(x),f(y),f(x+y) do not all equal 1, for any pair x,y\in\cube^{n}. Here we extend this test to a more systematic study of testing for linear-invariant non-linear properties. We consider properties that are described by a single forbidden pattern (and its linear transformations), i.e., a property is given by kk points v_{1},...,v_{k}\in\cube^{k} and f:\cube^{n}\to\cube satisfies the property that if for all linear maps L:\cube^{k}\to\cube^{n} it is the case that f(L(v1)),...,f(L(vk))f(L(v_{1})),...,f(L(v_{k})) do not all equal 1. We show that this property is testable if the underlying matroid specified by v1,...,vkv_{1},...,v_{k} is a graphic matroid. This extends Green's result to an infinite class of new properties. Our techniques extend those of Green and in particular we establish a link between the notion of "1-complexity linear systems" of Green and Tao, and graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the proceedings of STACS 200

    Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

    Get PDF
    Understanding the local behaviour of structured multi-dimensional data is a fundamental problem in various areas of computer science. As the amount of data is often huge, it is desirable to obtain sublinear time algorithms, and specifically property testers, to understand local properties of the data. We focus on the natural local problem of testing pattern freeness: given a large dd-dimensional array AA and a fixed dd-dimensional pattern PP over a finite alphabet, we say that AA is PP-free if it does not contain a copy of the forbidden pattern PP as a consecutive subarray. The distance of AA to PP-freeness is the fraction of entries of AA that need to be modified to make it PP-free. For any ϵ∈[0,1]\epsilon \in [0,1] and any large enough pattern PP over any alphabet, other than a very small set of exceptional patterns, we design a tolerant tester that distinguishes between the case that the distance is at least ϵ\epsilon and the case that it is at most adϵa_d \epsilon, with query complexity and running time cdϵ−1c_d \epsilon^{-1}, where ad<1a_d < 1 and cdc_d depend only on dd. To analyze the testers we establish several combinatorial results, including the following dd-dimensional modification lemma, which might be of independent interest: for any large enough pattern PP over any alphabet (excluding a small set of exceptional patterns for the binary case), and any array AA containing a copy of PP, one can delete this copy by modifying one of its locations without creating new PP-copies in AA. Our results address an open question of Fischer and Newman, who asked whether there exist efficient testers for properties related to tight substructures in multi-dimensional structured data. They serve as a first step towards a general understanding of local properties of multi-dimensional arrays, as any such property can be characterized by a fixed family of forbidden patterns
    • …
    corecore