32,459 research outputs found

    Efficiency and scaling of current drive and refuelling by spheromak injection into a tokamak

    Get PDF
    The first measurements of current drive (refluxing) and refuelling by spheromak injection into a tokamak are discussed in detail. The current drive mechanism is attributed to the process of helicity injection, and refuelling is attributed to the rapid incorporation of the dense spheromak plasma into the tokamak. After an abrupt increase (up to 80%), the tokamak current decays by a factor of three because of plasma cooling caused by the merging of the relatively cold spheromak with the tokamak. The tokamak density profile peaks sharply because of the injected spheromak plasma (n[sub]e increases by a factor of six) and then becomes hollow, suggestive of an interchange instability. Also discussed is the energy efficiency of spheromak injection current drive and the scaling of this process to larger machines. Refuelling by spheromak injection appears to be a viable scheme for larger machines. However, refluxing by spheromak injection is limited by geometrical and electrical efficiencies (both about 10%) as well as a high repetition rate requirement

    Effects of CT injector acceleration electrode configuration on tokamak penetration

    Get PDF
    Through compact toroid (CT) injection experiments on the TEXT-U tokamak (with BT simeq 10 kG and IP simeq 100 kA), it has been shown that the acceleration electrode configuration, particularly in the vicinity of the toroidal field (TF) coils of the tokamak, has a strong effect on penetration performance. In initial experiments, premature stopping of CTs within the injector was seen at anomalously low TF strengths. Two modifications were found to greatly improve performance: (a) removal of a section of the inner electrode and (b) increased diameter of the 'drift tube' (which guides the CT into the tokamak after acceleration). It is proposed that the primary drag mechanism slowing CTs is toroidal flux trapping, which occurs when a CT displaces transverse TF trapped within the flux conserving walls of the acceleration electrodes (or drift tube). For a simple two dimensional (2-D) geometry, a magnetostatic analysis produces a CT kinetic energy requirement of 1/2ρv2 ≥ α(B02/2μ0), with α = 2/(1-a2/R2) a dimensionless number that is dependent on the CT radius a normalized by the drift tube radius R. For a typical CT, this can greatly increase the required energies. A numerical analysis in 3-D confirms the analytical result for long CTs (with length L such that L/a gtrsim 10). In addition to flux trapping, the CT shape is also shown to affect the energy criterion. These findings indicate that a realistic assessment of the kinetic energy required for a CT to penetrate a particular tokamak TF must take into account the interaction of the magnetic field with the electrode walls of the injector

    Motion and equilibrium of a spheromak in a toroidal flux conserver

    Get PDF
    A number of experiments have been performed on spheromaks injected into the empty vacuum vessel of the Caltech ENCORE tokamak (i.e., without tokamak plasma) [Phys. Rev. Lett. 64, 2144 (1990); Phys. Fluids B 2, 1306 (1990)]. Magnetic probe arrays (in a number of configurations) have been used to make single shot, unaveraged, in situ measurements of the spheromak equilibrium. These measurements are important because (i) they reveal for the first time the equilibrium structure of spheromaks in a toroidal geometry, (ii) they provide a reliable estimate of magnetic helicity and energy of spheromak plasmas used in injection experiments [Phys. Rev. Lett. 64, 2144 (1990)], and (iii) they constitute the first measurements of spheromak motion across and interaction with static magnetic fields (which are useful in corroborating recent theories). Probe measurements in the tokamak dc toroidal field show for the first time that the spheromak exhibits a ``double tilt.''The spheromak first tilts while in the cylindrical entrance region, emerging into the tokamak vessel antialigned to the dc toroidal field, then expands into the tokamak vacuum vessel, and finally tilts again to form an oblate (nonaxisymmetric, m=1) configuration. In addition, the spheromak drifts vertically in the direction given by Jcenter×Btok, where Jcenter is the unbalanced poloidal current that threads the center of the spheromak torus. Probe arrays at different toroidal locations show that the spheromak shifts toroidally (horizontally left or right) in the direction opposite that of the static toroidal field. In the absence of toroidal flux, the m=1 object develops a helical pitch, the sense of the pitch depending on the sign of the spheromak helicity. The spheromak equilibrium in the toroidal vessel is well fit by a pressureless infinite cylindrical model; however, there is evidence of deviation from m=1 symmetry because of toroidal effects, nonuniform J/B profile, and finite beta. Experiments performed in a test facility consisting of the spheromak gun and a replica of the entrance region (with a closed end) show that the spheromak is generated with its axis coaxial with that of the gun. Coherent, m=2 magnetic modes are observed during the formation stage rotating in the E×B direction at about 125 kHz (rotation velocity corresponding to 40% of the Alfvén speed)
    corecore