773 research outputs found

    Claw-free t-perfect graphs can be recognised in polynomial time

    Full text link
    A graph is called t-perfect if its stable set polytope is defined by non-negativity, edge and odd-cycle inequalities. We show that it can be decided in polynomial time whether a given claw-free graph is t-perfect

    On Fork-free T-perfect Graphs

    Full text link
    In an attempt to understanding the complexity of the independent set problem, Chv{\'a}tal defined t-perfect graphs. While a full characterization of this class is still at large, progress has been achieved for claw-free graphs [Bruhn and Stein, Math.\ Program.\ 2012] and P5P_{5}-free graphs [Bruhn and Fuchs, SIAM J.\ Discrete Math.\ 2017]. We take one more step to characterize fork-free t-perfect graphs, and show that they are strongly t-perfect and three-colorable. We also present polynomial-time algorithms for recognizing and coloring these graphs

    On Box-Perfect Graphs

    Get PDF
    Let G=(V,E)G=(V,E) be a graph and let AGA_G be the clique-vertex incidence matrix of GG. It is well known that GG is perfect iff the system AGx≤1A_{_G}\mathbf x\le \mathbf 1, x≥0\mathbf x\ge\mathbf0 is totally dual integral (TDI). In 1982, Cameron and Edmonds proposed to call GG box-perfect if the system AGx≤1A_{_G}\mathbf x\le \mathbf 1, x≥0\mathbf x\ge\mathbf0 is box-totally dual integral (box-TDI), and posed the problem of characterizing such graphs. In this paper we prove the Cameron-Edmonds conjecture on box-perfectness of parity graphs, and identify several other classes of box-perfect graphs. We also develop a general and powerful method for establishing box-perfectness

    Separability and Vertex Ordering of Graphs

    Get PDF
    Many graph optimization problems, such as finding an optimal coloring, or a largest clique, can be solved by a divide-and-conquer approach. One such well-known technique is decomposition by clique separators where a graph is decomposed into special induced subgraphs along their clique separators. While the most common practice of this method employs minimal clique separators, in this work we study other variations as well. We strive to characterize their structure and in particular the bound on the number of atoms. In fact, we strengthen the known bounds for the general clique cutset decomposition and the minimal clique separator decomposition. Graph ordering is the arrangement of a graph’s vertices according to a certain logic and is a useful tool in optimization problems. Special types of vertices are often recognized in graph classes, for instance it is well-known every chordal graph contains a simplicial vertex. Vertex-ordering, based on such properties, have originated many linear time algorithms. We propose to define a new family named SE-Class such that every graph belonging to this family inherently contains a simplicial extreme, that is a vertex which is either simplicial or has exactly two neighbors which are non-adjacent. Our family lends itself to an ordering based on simplicial extreme vertices (named SEO) which we demonstrate to be advantageous for the coloring and maximum clique problems. In addition, we examine the relation of SE-Class to the family of (Even-Hole, Kite)-free graphs and show a linear time generation of SEO for (Even-Hole, Diamond, Claw)-free graphs. We showcase the applications of those two core tools, namely clique-based decomposition and vertex ordering, on the (Even-Hole, Kite)-free family

    Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireflexive Graphs

    Get PDF
    In this thesis we investigate three different aspects of graph theory. Firstly, we consider interesecting systems of independent sets in graphs, and the extension of the classical theorem of Erdos, Ko and Rado to graphs. Our main results are a proof of an Erdos-Ko-Rado type theorem for a class of trees, and a class of trees which form counterexamples to a conjecture of Hurlberg and Kamat, in such a way that extends the previous counterexamples given by Baber. Secondly, we investigate perfect graphs - specifically, edge modification aspects of perfect graphs and their subclasses. We give some alternative characterisations of perfect graphs in terms of edge modification, as well as considering the possible connection of the critically perfect graphs - previously studied by Wagler - to the Strong Perfect Graph Theorem. We prove that the situation where critically perfect graphs arise has no analogue in seven different subclasses of perfect graphs (e.g. chordal, comparability graphs), and consider the connectivity of a bipartite reconfiguration-type graph associated to each of these subclasses. Thirdly, we consider a graph theoretic structure called a bireflexive graph where every vertex is both adjacent and nonadjacent to itself, and use this to characterise modular decompositions as the surjective homomorphisms of these structures. We examine some analogues of some graph theoretic notions and define a “dual” version of the reconstruction conjecture
    • …
    corecore