4,497 research outputs found

    Theoretical Foundations of t-SNE for Visualizing High-Dimensional Clustered Data

    Full text link
    This paper investigates the theoretical foundations of the t-distributed stochastic neighbor embedding (t-SNE) algorithm, a popular nonlinear dimension reduction and data visualization method. A novel theoretical framework for the analysis of t-SNE based on the gradient descent approach is presented. For the early exaggeration stage of t-SNE, we show its asymptotic equivalence to power iterations based on the underlying graph Laplacian, characterize its limiting behavior, and uncover its deep connection to Laplacian spectral clustering, and fundamental principles including early stopping as implicit regularization. The results explain the intrinsic mechanism and the empirical benefits of such a computational strategy. For the embedding stage of t-SNE, we characterize the kinematics of the low-dimensional map throughout the iterations, and identify an amplification phase, featuring the intercluster repulsion and the expansive behavior of the low-dimensional map, and a stabilization phase. The general theory explains the fast convergence rate and the exceptional empirical performance of t-SNE for visualizing clustered data, brings forth interpretations of the t-SNE visualizations, and provides theoretical guidance for applying t-SNE and selecting its tuning parameters in various applications.Comment: Accepted by Journal of Machine Learning Researc

    Parametric t-Distributed Stochastic Exemplar-centered Embedding

    Full text link
    Parametric embedding methods such as parametric t-SNE (pt-SNE) have been widely adopted for data visualization and out-of-sample data embedding without further computationally expensive optimization or approximation. However, the performance of pt-SNE is highly sensitive to the hyper-parameter batch size due to conflicting optimization goals, and often produces dramatically different embeddings with different choices of user-defined perplexities. To effectively solve these issues, we present parametric t-distributed stochastic exemplar-centered embedding methods. Our strategy learns embedding parameters by comparing given data only with precomputed exemplars, resulting in a cost function with linear computational and memory complexity, which is further reduced by noise contrastive samples. Moreover, we propose a shallow embedding network with high-order feature interactions for data visualization, which is much easier to tune but produces comparable performance in contrast to a deep neural network employed by pt-SNE. We empirically demonstrate, using several benchmark datasets, that our proposed methods significantly outperform pt-SNE in terms of robustness, visual effects, and quantitative evaluations.Comment: fixed typo

    Universally Consistent Latent Position Estimation and Vertex Classification for Random Dot Product Graphs

    Full text link
    In this work we show that, using the eigen-decomposition of the adjacency matrix, we can consistently estimate latent positions for random dot product graphs provided the latent positions are i.i.d. from some distribution. If class labels are observed for a number of vertices tending to infinity, then we show that the remaining vertices can be classified with error converging to Bayes optimal using the kk-nearest-neighbors classification rule. We evaluate the proposed methods on simulated data and a graph derived from Wikipedia

    Dimensionality Reduction Mappings

    Get PDF
    A wealth of powerful dimensionality reduction methods has been established which can be used for data visualization and preprocessing. These are accompanied by formal evaluation schemes, which allow a quantitative evaluation along general principles and which even lead to further visualization schemes based on these objectives. Most methods, however, provide a mapping of a priorly given finite set of points only, requiring additional steps for out-of-sample extensions. We propose a general view on dimensionality reduction based on the concept of cost functions, and, based on this general principle, extend dimensionality reduction to explicit mappings of the data manifold. This offers simple out-of-sample extensions. Further, it opens a way towards a theory of data visualization taking the perspective of its generalization ability to new data points. We demonstrate the approach based on a simple global linear mapping as well as prototype-based local linear mappings.
    corecore