40,075 research outputs found

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications

    Almost-Fisher families

    Full text link
    A classic theorem in combinatorial design theory is Fisher's inequality, which states that a family F\mathcal F of subsets of [n][n] with all pairwise intersections of size λ\lambda can have at most nn non-empty sets. One may weaken the condition by requiring that for every set in F\mathcal F, all but at most kk of its pairwise intersections have size λ\lambda. We call such families kk-almost λ\lambda-Fisher. Vu was the first to study the maximum size of such families, proving that for k=1k=1 the largest family has 2n22n-2 sets, and characterising when equality is attained. We substantially refine his result, showing how the size of the maximum family depends on λ\lambda. In particular we prove that for small λ\lambda one essentially recovers Fisher's bound. We also solve the next open case of k=2k=2 and obtain the first non-trivial upper bound for general kk.Comment: 27 pages (incluiding one appendix

    Optimal experiment design revisited: fair, precise and minimal tomography

    Full text link
    Given an experimental set-up and a fixed number of measurements, how should one take data in order to optimally reconstruct the state of a quantum system? The problem of optimal experiment design (OED) for quantum state tomography was first broached by Kosut et al. [arXiv:quant-ph/0411093v1]. Here we provide efficient numerical algorithms for finding the optimal design, and analytic results for the case of 'minimal tomography'. We also introduce the average OED, which is independent of the state to be reconstructed, and the optimal design for tomography (ODT), which minimizes tomographic bias. We find that these two designs are generally similar. Monte-Carlo simulations confirm the utility of our results for qubits. Finally, we adapt our approach to deal with constrained techniques such as maximum likelihood estimation. We find that these are less amenable to optimization than cruder reconstruction methods, such as linear inversion.Comment: 16 pages, 7 figure

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201
    corecore