4,599 research outputs found

    Stellar formation rates in galaxies using Machine Learning models

    Get PDF
    Global Stellar Formation Rates or SFRs are crucial to constrain theories of galaxy formation and evolution. SFR's are usually estimated via spectroscopic observations which require too much previous telescope time and therefore cannot match the needs of modern precision cosmology. We therefore propose a novel method to estimate SFRs for large samples of galaxies using a variety of supervised ML models.Comment: ESANN 2018 - Proceedings, ISBN-13 978287587048

    Comparison of Observed Galaxy Properties with Semianalytic Model Predictions using Machine Learning

    Full text link
    With current and upcoming experiments such as WFIRST, Euclid and LSST, we can observe up to billions of galaxies. While such surveys cannot obtain spectra for all observed galaxies, they produce galaxy magnitudes in color filters. This data set behaves like a high-dimensional nonlinear surface, an excellent target for machine learning. In this work, we use a lightcone of semianalytic galaxies tuned to match CANDELS observations from Lu et al. (2014) to train a set of neural networks on a set of galaxy physical properties. We add realistic photometric noise and use trained neural networks to predict stellar masses and average star formation rates on real CANDELS galaxies, comparing our predictions to SED fitting results. On semianalytic galaxies, we are nearly competitive with template-fitting methods, with biases of 0.010.01 dex for stellar mass, 0.090.09 dex for star formation rate, and 0.040.04 dex for metallicity. For the observed CANDELS data, our results are consistent with template fits on the same data at 0.150.15 dex bias in MstarM_{\rm star} and 0.610.61 dex bias in star formation rate. Some of the bias is driven by SED-fitting limitations, rather than limitations on the training set, and some is intrinsic to the neural network method. Further errors are likely caused by differences in noise properties between the semianalytic catalogs and data. Our results show that galaxy physical properties can in principle be measured with neural networks at a competitive degree of accuracy and precision to template-fitting methods.Comment: 19 pages, 10 figures, 6 tables. Accepted for publication in Ap

    Unsupervised feature-learning for galaxy SEDs with denoising autoencoders

    Full text link
    With the increasing number of deep multi-wavelength galaxy surveys, the spectral energy distribution (SED) of galaxies has become an invaluable tool for studying the formation of their structures and their evolution. In this context, standard analysis relies on simple spectro-photometric selection criteria based on a few SED colors. If this fully supervised classification already yielded clear achievements, it is not optimal to extract relevant information from the data. In this article, we propose to employ very recent advances in machine learning, and more precisely in feature learning, to derive a data-driven diagram. We show that the proposed approach based on denoising autoencoders recovers the bi-modality in the galaxy population in an unsupervised manner, without using any prior knowledge on galaxy SED classification. This technique has been compared to principal component analysis (PCA) and to standard color/color representations. In addition, preliminary results illustrate that this enables the capturing of extra physically meaningful information, such as redshift dependence, galaxy mass evolution and variation over the specific star formation rate. PCA also results in an unsupervised representation with physical properties, such as mass and sSFR, although this representation separates out. less other characteristics (bimodality, redshift evolution) than denoising autoencoders.Comment: 11 pages and 15 figures. To be published in A&

    A Method to Distinguish Quiescent and Dusty Star-forming Galaxies with Machine Learning

    Get PDF
    Large photometric surveys provide a rich source of observations of quiescent galaxies, including a surprisingly large population at z > 1. However, identifying large, but clean, samples of quiescent galaxies has proven difficult because of their near-degeneracy with interlopers such as dusty, star-forming galaxies. We describe a new technique for selecting quiescent galaxies based upon t-distributed stochastic neighbor embedding (t-SNE), an unsupervised machine-learning algorithm for dimensionality reduction. This t-SNE selection provides an improvement both over UVJ, removing interlopers that otherwise would pass color selection, and over photometric template fitting, more strongly toward high redshift. Due to the similarity between the colors of high- and low-redshift quiescent galaxies, under our assumptions, t-SNE outperforms template fitting in 63% of trials at redshifts where a large training sample already exists. It also may be able to select quiescent galaxies more efficiently at higher redshifts than the training sample

    Predicting spectral features in galaxy spectra from broad-band photometry

    Full text link
    We explore the prospects of predicting emission line features present in galaxy spectra given broad-band photometry alone. There is a general consent that colours, and spectral features, most notably the 4000 A break, can predict many properties of galaxies, including star formation rates and hence they could infer some of the line properties. We argue that these techniques have great prospects in helping us understand line emission in extragalactic objects and might speed up future galaxy redshift surveys if they are to target emission line objects only. We use two independent methods, Artifical Neural Neworks (based on the ANNz code) and Locally Weighted Regression (LWR), to retrieve correlations present in the colour N-dimensional space and to predict the equivalent widths present in the corresponding spectra. We also investigate how well it is possible to separate galaxies with and without lines from broad band photometry only. We find, unsurprisingly, that recombination lines can be well predicted by galaxy colours. However, among collisional lines some can and some cannot be predicted well from galaxy colours alone, without any further redshift information. We also use our techniques to estimate how much information contained in spectral diagnostic diagrams can be recovered from broad-band photometry alone. We find that it is possible to classify AGN and star formation objects relatively well using colours only. We suggest that this technique could be used to considerably improve redshift surveys such as the upcoming FMOS survey and the planned WFMOS survey.Comment: 10 pages 7 figures summitted to MNRA

    An Active Instance-based Machine Learning method for Stellar Population Studies

    Full text link
    We have developed a method for fast and accurate stellar population parameters determination in order to apply it to high resolution galaxy spectra. The method is based on an optimization technique that combines active learning with an instance-based machine learning algorithm. We tested the method with the retrieval of the star-formation history and dust content in "synthetic" galaxies with a wide range of S/N ratios. The "synthetic" galaxies where constructed using two different grids of high resolution theoretical population synthesis models. The results of our controlled experiment shows that our method can estimate with good speed and accuracy the parameters of the stellar populations that make up the galaxy even for very low S/N input. For a spectrum with S/N=5 the typical average deviation between the input and fitted spectrum is less than 10**{-5}. Additional improvements are achieved using prior knowledge.Comment: 14 pages, 25 figures, accepted by Monthly Notice
    • …
    corecore