88,836 research outputs found

    Soot formation and burnout in flames

    Get PDF
    The amount of soot formed when burning a benzene/hexane mixture in a turbulent combustor was examined. Soot concentration profiles in the same combustor for kerosene fuel are given. The chemistry of the formation of soot precursors, the nucleation, growth and subsequent burnout of soot particles, and the effect of mixing on the previous steps were considered

    Conditional moment closure modelling of soot formation in turbulent, non-premixed methane and propane flames

    Get PDF
    Presented are results obtained from the incorporation of a semi-empirical soot model into a first-order conditional moment closure (CMC) approach to modelling turbulent, non-premixed methane–air and propane–air flames. Soot formation is determined via the solution of two transport equations for soot mass fraction and particle number density, with acetylene and benzene employed as the incipient species responsible for soot nucleation, and the concentrations of these calculated using a detailed gas-phase kinetic scheme involving 70 species. The study focuses on the influence of differential diffusion of soot particles on soot volume fraction predictions. The results of calculations are compared with experimental data for atmospheric and 3 atm methane flames, and propane flames with air preheated to 323 K and 773 K. Overall, the study demonstrates that the model, when used in conjunction with a representation of differential diffusion effects, is capable of accurately predicting soot formation in the turbulent non-premixed flames considered

    Modelling of soot formation in laminar diffusion flames using a comprehensive CFD-PBE model with detailed gas-phase chemistry

    Get PDF
    A discretised population balance equation (PBE) is coupled with an in-house computational fluid dynamics (CFD) code in order to model soot formation in laminar diffusion flames. The unsteady Navier–Stokes, species and enthalpy transport equations and the spatially-distributed discretised PBE for the soot particles are solved in a coupled manner, together with comprehensive gas-phase chemistry and an optically thin radiation model, thus yielding the complete particle size distribution of the soot particles. Nucleation, surface growth and oxidation are incorporated into the PBE using an acetylene-based soot model. The potential of the proposed methodology is investigated by comparing with experimental results from the Santoro jet burner [Santoro, Semerjian and Dobbins, Soot particle measurements in diffusion flames, Combustion and Flame, Vol. 51 (1983), pp. 203–218; Santoro, Yeh, Horvath and Semerjian, The transport and growth of soot particles in laminar diffusion flames, Combustion Science and Technology, Vol. 53 (1987), pp. 89–115] for three laminar axisymmetric non-premixed ethylene flames: a non-smoking, an incipient smoking and a smoking flame. Overall, good agreement is observed between the numerical and the experimental results

    Fuel property effects in stirred combustors

    Get PDF
    Soot formation in strongly backmixed combustion was investigated using the jet-stirred combustor (JSC). This device provided a combustion volume in which temperature and combustion were uniform. It simulated the recirculating characteristics of the gas turbine primary zone; it was in this zone where mixture conditions were sufficiently rich to produce soot. Results indicate that the JSC allows study of soot formation in an aerodynamic situation revelant to gas turbines

    Soot formation in a turbulent swirling flow

    Get PDF
    The qualitative understanding of soot formation in simple models of gas turbine primary-zone combustors is summarized. Soot formation in flame radiation and air pollution was investigated. Results are presented, namely: (1) if the fuel is premixed with air in approximately stoichiometric proportions, the sequence of states that a fluid element undergoes as it burns is quite different from the sequence when liquid or vapor fuel is injected into an air-flow; (2) swirling flows, as are typical or swirl-can combustors, when burning, can amplify small aerodynamic disturbances upstream of the swirl vanes; and (3) different fuels form significantly different amounts of soot. Each of these effects makes major changes in the amount of soot formed in a given combustor

    Computations of Emissions Using a 3-D Combustor Program

    Get PDF
    A general 3-D combustor performance program developed by Garrett was extended to predict soot and NOx emissions. The soot formation and oxidation rates were computed by quasi-global models, taking into account the influence of turbulence. Radiation heat transfer was computed by the six-flux radiation mode. The radiation properties include the influence of CO2 and H2O in addition to soot. NOx emissions were computed from a global four-step hydrocarbon oxidation scheme and a set of rate-controlled reactions involving radicals and nitrogen oxides

    Albedo and flux extinction coefficient of impure snow for diffuse shortwave radiation

    Get PDF
    Impurities enter a snowpack as a result of fallout of scavenging by falling snow crystals. Albedo and flux extinction coefficient of soot contaminated snowcovers were studied using a two stream approximation of the radiative transfer equation. The effect of soot was calculated by two methods: independent scattering by ice grains and impurities and average refractive index for ice grains. Both methods predict a qualitatively similar effect of soot; the albedo is decreased and the extinction coefficient is increased compared to that for pure snow in the visible region; the infrared properties are largely unaffected. Quantitatively, however, the effect of soot is more pronounced in the average refractive index method. Soot contamination provides a qualitative explanation for several snow observations

    Laboratory measurements in a turbulent, swirling flow

    Get PDF
    Measurements of soot inside a flame-tube burner using a special water-flushed probe are discussed. The soot is measured at a series of points at each burner, and upon occasion gaseous constitutents NO, CO, hydrocarbons, etc., were also measured. Four geometries of flame-tube burners were studied, as well as a variety of different fuels. The role of upstream geometry on the downstream pollutant formation was studied. It was found that the amount of soot formed in particularly sensitive to how aerodynamically clean the configuration of the burner is upstream of the injector swirl vanes. The effect of pressure on soot formation was also studied. It was found that beyond a certain Reynolds number, the peak amount of soot formed in the burner is constant
    • …
    corecore