1,157,018 research outputs found

    Thick GaN film stress-induced self-separation

    Full text link
    Cracking of thick GaN films on sapphire substrates during the cooling down after the growth was studied. The cracking was suppressed by increasing the film-to-substrate thickness ratio and by using an intermediate carbon buffer layer, that reduced the binding energy between the GaN film and the substrate. Wafer-scale self-separation of thick GaN films has been demonstrated.Comment: Published in Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus

    On the equality of Hausdorff measure and Hausdorff content

    Full text link
    We are interested in situations where the Hausdorff measure and Hausdorff content of a set are equal in the critical dimension. Our main result shows that this equality holds for any subset of a self-similar set corresponding to a nontrivial cylinder of an irreducible subshift of finite type, and thus also for any self-similar or graph-directed self-similar set, regardless of separation conditions. The main tool in the proof is an exhaustion lemma for Hausdorff measure based on the Vitali Covering Theorem. We also give several examples showing that one cannot hope for the equality to hold in general if one moves in a number of the natural directions away from `self-similar'. For example, it fails in general for self-conformal sets, self-affine sets and Julia sets. We also give applications of our results concerning Ahlfors regularity. Finally we consider an analogous version of the problem for packing measure. In this case we need the strong separation condition and can only prove that the packing measure and δ\delta-approximate packing pre-measure coincide for sufficiently small δ>0\delta>0.Comment: 21 pages. This version includes applications concerning the weak separation property and Ahlfors regularity. To appear in Journal of Fractal Geometr

    Hierarchical Self-Assembly of Halogen-Bonded Block Copolymer Complexes into Upright Cylindrical Domains

    Get PDF
    Self-assembly of block copolymers into well-defined, ordered arrangements of chemically distinct domains is a reliable strategy for preparing tailored nanostructures. Microphase separation results from the system, minimizing repulsive interactions between dissimilar blocks and maximizing attractive interactions between similar blocks. Supramolecular methods have also achieved this separation by introducing small-molecule additives binding specifically to one block by noncovalent interactions. Here, we use halogen bonding as a supramolecular tool that directs the hierarchical self-assembly of low-molecular-weight perfluorinated molecules and diblock copolymers. Microphase separation results in a lamellar-within-cylindrical arrangement and promotes upright cylindrical alignment in films upon rapid casting and without further annealing. Such cylindrical domains with internal lamellar self-assemblies can be cleaved by solvent treatment of bulk films, resulting in separated and segmented cylindrical micelles stabilized by halogen-bond-based supramolecular crosslinks. These features, alongside the reversible nature of halogen bonding, provide a robust modular approach for nanofabricatio

    Solution of the local field equations for self-generated glasses

    Full text link
    We present a self-consistent local approach to self generated glassiness which is based on the concept of the dynamical mean field theory to many body systems. Using a replica approach to self generated glassiness, we map the problem onto an effective local problem which can be solved exactly. Applying the approach to the Brazovskii-model, relevant to a large class of systems with frustrated micro-phase separation, we are able to solve the self-consistent local theory without using additional approximations. We demonstrate that a glassy state found earlier in this model is generic and does not arise from the use of perturbative approximations. In addition we demonstrate that the glassy state depends strongly on the strength of the frustrated phase separation in that model.Comment: 11 pages, 3 figure

    On the Assouad dimension of self-similar sets with overlaps

    Full text link
    It is known that, unlike the Hausdorff dimension, the Assouad dimension of a self-similar set can exceed the similarity dimension if there are overlaps in the construction. Our main result is the following precise dichotomy for self-similar sets in the line: either the \emph{weak separation property} is satisfied, in which case the Hausdorff and Assouad dimensions coincide; or the \emph{weak separation property} is not satisfied, in which case the Assouad dimension is maximal (equal to one). In the first case we prove that the self-similar set is Ahlfors regular, and in the second case we use the fact that if the \emph{weak separation property} is not satisfied, one can approximate the identity arbitrarily well in the group generated by the similarity mappings, and this allows us to build a \emph{weak tangent} that contains an interval. We also obtain results in higher dimensions and provide illustrative examples showing that the `equality/maximal' dichotomy does not extend to this setting.Comment: 24 pages, 2 figure
    corecore