36,843 research outputs found

    Radio Galaxy Zoo: Knowledge Transfer Using Rotationally Invariant Self-Organising Maps

    Full text link
    With the advent of large scale surveys the manual analysis and classification of individual radio source morphologies is rendered impossible as existing approaches do not scale. The analysis of complex morphological features in the spatial domain is a particularly important task. Here we discuss the challenges of transferring crowdsourced labels obtained from the Radio Galaxy Zoo project and introduce a proper transfer mechanism via quantile random forest regression. By using parallelized rotation and flipping invariant Kohonen-maps, image cubes of Radio Galaxy Zoo selected galaxies formed from the FIRST radio continuum and WISE infrared all sky surveys are first projected down to a two-dimensional embedding in an unsupervised way. This embedding can be seen as a discretised space of shapes with the coordinates reflecting morphological features as expressed by the automatically derived prototypes. We find that these prototypes have reconstructed physically meaningful processes across two channel images at radio and infrared wavelengths in an unsupervised manner. In the second step, images are compared with those prototypes to create a heat-map, which is the morphological fingerprint of each object and the basis for transferring the user generated labels. These heat-maps have reduced the feature space by a factor of 248 and are able to be used as the basis for subsequent ML methods. Using an ensemble of decision trees we achieve upwards of 85.7% and 80.7% accuracy when predicting the number of components and peaks in an image, respectively, using these heat-maps. We also question the currently used discrete classification schema and introduce a continuous scale that better reflects the uncertainty in transition between two classes, caused by sensitivity and resolution limits

    Cosmic ray short burst observed with the Global Muon Detector Network (GMDN) on June 22, 2015

    Get PDF
    We analyze the short cosmic ray intensity increase ("cosmic ray burst": CRB) on June 22, 2015 utilizing a global network of muon detectors and derive the global anisotropy of cosmic ray intensity and the density (i.e. the omnidirectional intensity) with 10-minute time resolution. We find that the CRB was caused by a local density maximum and an enhanced anisotropy of cosmic rays both of which appeared in association with Earth's crossing of the heliospheric current sheet (HCS). This enhanced anisotropy was normal to the HCS and consistent with a diamagnetic drift arising from the spatial gradient of cosmic ray density, which indicates that cosmic rays were drifting along the HCS from the north of Earth. We also find a significant anisotropy along the HCS, lasting a few hours after the HCS crossing, indicating that cosmic rays penetrated into the inner heliosphere along the HCS. Based on the latest geomagnetic field model, we quantitatively evaluate the reduction of the geomagnetic cut-off rigidity and the variation of the asymptotic viewing direction of cosmic rays due to a major geomagnetic storm which occurred during the CRB and conclude that the CRB is not caused by the geomagnetic storm, but by a rapid change in the cosmic ray anisotropy and density outside the magnetosphere.Comment: accepted for the publication in the Astrophysical Journa

    An Introduction to Temporal Optimisation using a Water Management Problem

    Get PDF
    Optimisation problems usually take the form of having a single or multiple objectives with a set of constraints. The model itself concerns a single problem for which the best possible solution is sought. Problems are usually static in the sense that they do not consider changes over time in a cumulative manner. Dynamic optimisation problems to incorporate changes. However, these are memoryless in that the problem description changes and a new problem is solved - but with little reference to any previous information. In this paper, a temporally augmented version of a water management problem which allows farmers to plan over long time horizons is introduced. A climate change projection model is used to predict both rainfall and temperature for the Murrumbidgee Irrigation Area in Australia for up to 50 years into the future. Three representative decades are extracted from the climate change model to create the temporal data sets. The results confirm the utility of the temporal approach and show, for the case study area, that crops that can feasibly and sustainably be grown will be a lot fewer than the present day in the challenging water-reduced conditions of the future

    Sustainable community services for older people

    Get PDF
    This paper explores the sustainability of non-government organisations (NGOs) providing services to older people in the local government authority area of North Sydney. It identifies several key issues that can be used to assess the level of programme sustainability in the community sector. We suggest that government support is essential for the ongoing financial sustainability of community aged care services and that community-based organisations need to address a number of issues that will impact on their long-term sustainability. A good working relationship with local and state government is crucial for organisations to access community grants, donations and subsidised premises. The recruitment, training and retention of volunteers were some of the most important issues identified. Further, these NGOs will need to develop strategic plans that factor in sustainability indicators to address rental, recycling, transport, renewable energy and water costs to ensure that they have the capacity to pay for these utilities in the future

    Detection of 84-GHz class I methanol maser emission towards NGC 253

    Full text link
    We have investigated the central region of NGC 253 for the presence of 84.5-GHz (51405_{-1}\rightarrow4_0E) methanol emission using the Australia Telescope Compact Array. We present the second detection of 84.5-GHz class~I methanol maser emission outside the Milky Way. This maser emission is offset from dynamical centre of NGC 253, in a region with previously detected emission from class~I maser transitions (36.2-GHz 41304_{-1}\rightarrow3_0E and 44.1-GHz 70617_{0}\rightarrow6_1A+^{+} methanol lines) . The emission features a narrow linewidth (\sim12 km s1^{-1}) with a luminosity approximately 5 orders of magnitude higher than typical Galactic sources. We determine an integrated line intensity ratio of 1.2±0.41.2\pm0.4 between the 36.2 GHz and 84.5-GHz class I methanol maser emission, which is similar to the ratio observed towards Galactic sources. The three methanol maser transitions observed toward NGC 253 each show a different distribution, suggesting differing physical conditions between the maser sites and that observations of additional class~I methanol transitions will facilitate investigations of the maser pumping regime.Comment: Accepted into ApJL 12 October 2018. 10 pages, 3 Figures and 2 Table

    An intrusion layer in stationary incompressible fluids Part 2: A solitary wave

    Get PDF
    The propagation of a solitary wave in a horizontal fluid layer is studied. There is an interfacial free surface above and below this intrusion layer, which is moving at constant speed through a stationary density-stratified fluid system. A weakly nonlinear asymptotic theory is presented, leading to a Korteweg-de Vries equation in which the two fluid interfaces move oppositely. The intrusion layer solitary wave system thus forms a widening bulge that propagates without change of form. These results are confirmed and extended by a fully nonlinear solution, in which a boundary-integral formulation is used to solve the problem numerically. Limiting profiles are approached, for which a corner forms at the crest of the solitary wave, on one or both of the interfaces

    A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud

    Full text link
    We present a study of the magnetic field of the Small Magellanic Cloud (SMC), carried out using radio Faraday rotation and optical starlight polarization data. Consistent negative rotation measures (RMs) across the SMC indicate that the line-of-sight magnetic field is directed uniformly away from us with a strength 0.19 +/- 0.06 microGauss. Applying the Chandrasekhar-Fermi method to starlight polarization data yields an ordered magnetic field in the plane of the sky of strength 1.6 +/- 0.4 microGauss oriented at a position angle 4 +/- 12 degs, measured counter-clockwise from the great circle on the sky joining the SMC to the Large Magellanic Cloud (LMC). We construct a three-dimensional magnetic field model of the SMC, under the assumption that the RMs and starlight polarization probe the same underlying large-scale field. The vector defining the overall orientation of the SMC magnetic field shows a potential alignment with the vector joining the center of the SMC to the center of the LMC, suggesting the possibility of a "pan-Magellanic'' magnetic field. A cosmic-ray driven dynamo is the most viable explanation of the observed field geometry, but has difficulties accounting for the observed uni-directional field lines. A study of Faraday rotation through the Magellanic Bridge is needed to further test the pan-Magellanic field hypothesis.Comment: 28 pages, 6 figures, accepted for publication in Ap

    Enumeration of idempotents in planar diagram monoids

    Get PDF
    We classify and enumerate the idempotents in several planar diagram monoids: namely, the Motzkin, Jones (a.k.a. Temperley-Lieb) and Kauffman monoids. The classification is in terms of certain vertex- and edge-coloured graphs associated to Motzkin diagrams. The enumeration is necessarily algorithmic in nature, and is based on parameters associated to cycle components of these graphs. We compare our algorithms to existing algorithms for enumerating idempotents in arbitrary (regular *-) semigroups, and give several tables of calculated values.Comment: Majorly revised (new title, new abstract, one additional author), 24 pages, 6 figures, 8 tables, 5 algorithm

    From research to practice: The case of mathematical reasoning

    Get PDF
    Mathematical proficiency is a key goal of the Australian Mathematics curriculum. However, international assessments of mathematical literacy suggest that mathematical reasoning and problem solving are areas of difficulty for Australian students. Given the efficacy of teaching informed by quality assessment data, a recent study focused on the development of evidence-based Learning Progressions for Algebraic, Spatial and Statistical Reasoning that can be used to identify where students are in their learning and where they need to go to next. Importantly, they can also be used to generate targeted teaching advice and activities to help teachers progress student learning. This paper explores the processes involved in taking the research to practice
    corecore