5,179 research outputs found

    Production cross sections from 82Se fragmentation as indications of shell effects in neutron-rich isotopes close to the drip-line

    Get PDF
    Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u were measured. The longitudinal momentum distributions of 126 neutron-rich isotopes of elements 11 <= Z <= 32 were scanned using an experimental approach of varying the target thickness. Production cross sections with beryllium and tungsten targets were determined for a large number of nuclei including several isotopes first observed in this work. These are the most neutron-rich nuclides of the elements 22 <= Z <= 25 (64Ti, 67V, 69Cr, 72Mn). One event was registered consistent with 70Cr, and another one with 75Fe. The production cross sections are correlated with Qg systematics to reveal trends in the data. The results presented here confirm our previous result from a similar measurement using a 76Ge beam, and can be explained with a shell model that predicts a subshell closure at N = 34 around Z = 20. This is demonstrated by systematic trends and calculations with the Abrasion-Ablation model that are sensitive to separation energies.Comment: 13 pages, 11 figures, accepted to Phys.Rev.

    Recovering S1S^1-invariant metrics on S2S^2 from the equivariant spectrum

    Full text link
    We prove an inverse spectral result for S1S^1-invariant metrics on S2S^2 based on the so-called asymptotic equivariant spectrum. This is roughly the spectrum together with large weights of the S1S^1 action on the eigenspaces. Our result generalizes an inverse spectral result of the first and last named authors, together with Victor Guillemin, concerning S1S^1-invariant metrics on S2S^2 which are invariant under the antipodal map. We use higher order terms in the asymptotic expansion of a natural spectral measure associated with the Laplacian and the S1S^1 action.Comment: 16 pages; minor revisions throughout following comments from referee

    Distributions of Human Exposure to Ozone During Commuting Hours in Connecticut using the Cellular Device Network

    Get PDF
    Epidemiologic studies have established associations between various air pollutants and adverse health outcomes for adults and children. Due to high costs of monitoring air pollutant concentrations for subjects enrolled in a study, statisticians predict exposure concentrations from spatial models that are developed using concentrations monitored at a few sites. In the absence of detailed information on when and where subjects move during the study window, researchers typically assume that the subjects spend their entire day at home, school or work. This assumption can potentially lead to large exposure assignment bias. In this study, we aim to determine the distribution of the exposure assignment bias for an air pollutant (ozone) when subjects are assumed to be static as compared to accounting for individual mobility. To achieve this goal, we use cell-phone mobility data on approximately 400,000 users in the state of Connecticut during a week in July, 2016, in conjunction with an ozone pollution model, and compare individual ozone exposure assuming static versus mobile scenarios. Our results show that exposure models not taking mobility into account often provide poor estimates of individuals commuting into and out of urban areas: the average 8-hour maximum difference between these estimates can exceed 80 parts per billion (ppb). However, for most of the population, the difference in exposure assignment between the two models is small, thereby validating many current epidemiologic studies focusing on exposure to ozone

    Impulsive people have a compulsion for immediate gratification-certain or uncertain.

    Get PDF
    Impulsivity has been defined as choosing the smaller more immediate reward over a larger more delayed reward. The purpose of this research was to gain a deeper understanding of the mental processes involved in the decision making. We examined participants' rates of delay discounting and probability discounting to determine their correlation with time-probability trade-offs. To establish the time-probability trade-off rate, participants adjusted a risky, immediate payoff to a delayed, certain payoff. In effect, this yielded a probability equivalent of waiting time. We found a strong, positive correlation between delay discount rates and the time-probability trade-offs. This means that impulsive people have a compulsion for immediate gratification, independent of whether the immediate reward is certain or uncertain. Thus, they seem not to be concerned with risk but rather with time

    Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    Full text link
    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,γ\gamma), (α\alpha,γ\gamma), and (α\alpha,p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the {\Kepler} stellar evolution code. All relevant reaction rates on neutron deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 highest impact reaction rate changes were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape X-ray burst observables and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.Comment: 24 pages, 13 figures, 4 tables, submitte

    Microscopic picture of aging in SiO2

    Get PDF
    We investigate the aging dynamics of amorphous SiO2 via molecular dynamics simulations of a quench from a high temperature T_i to a lower temperature T_f. We obtain a microscopic picture of aging dynamics by analyzing single particle trajectories, identifying jump events when a particle escapes the cage formed by its neighbors, and by determining how these jumps depend on the waiting time t_w, the time elapsed since the temperature quench to T_f. We find that the only t_w-dependent microscopic quantity is the number of jumping particles per unit time, which decreases with age. Similar to previous studies for fragile glass formers, we show here for the strong glass former SiO2 that neither the distribution of jump lengths nor the distribution of times spent in the cage are t_w-dependent. We conclude that the microscopic aging dynamics is surprisingly similar for fragile and strong glass formers.Comment: 4 pages, 7 figure

    Anomalous velocity distributions in active Brownian suspensions

    Full text link
    Large scale simulations and analytical theory have been combined to obtain the non-equilibrium velocity distribution, f(v)f(v), of randomly accelerated particles in suspension. The simulations are based on an event-driven algorithm, generalised to include friction. They reveal strongly anomalous but largely universal distributions which are independent of volume fraction and collision processes, which suggests a one-particle model should capture all the essential features. We have formulated this one-particle model and solved it analytically in the limit of strong damping, where we find that f(v)f(v) decays as 1/v1/v for multiple decades, eventually crossing over to a Gaussian decay for the largest velocities. Many particle simulations and numerical solution of the one-particle model agree for all values of the damping.Comment: 6 pages, 5 figure

    Evaluating LL-functions with few known coefficients

    Full text link
    We address the problem of evaluating an LL-function when only a small number of its Dirichlet coefficients are known. We use the approximate functional equation in a new way and find that is possible to evaluate the LL-function more precisely than one would expect from the standard approach. The method, however, requires considerably more computational effort to achieve a given accuracy than would be needed if more Dirichlet coefficients were available.Comment: 14 pages; Added a new section where we evaluate L(1/2 + 100 i, Delta) to 42 decimal places using no Dirichlet series coefficients at al

    Infrared Parallaxes of Young Field Brown Dwarfs and Connections to Directly Imaged Gas-Giant Exoplanets

    Full text link
    We have measured high-precision parallaxes for a large sample of candidate young (~10-100 Myr) and intermediate-age (~100-600 Myr) ultracool dwarfs, with spectral types ranging from M8 to T2.5. These objects are compelling benchmarks for substellar evolution and ultracool atmospheres at lower surface gravities (i.e., masses) than most of the field population. We find that the absolute magnitudes of our young sample can be systematically offset from ordinary (older) field dwarfs, with the young late-M objects being brighter and the young/dusty mid-L (L3-L6.5) objects being fainter, especially at J band. Thus, we conclude the "underluminosity" of the young planetary-mass companions HR 8799b and 2MASS J1207-39b compared to field dwarfs is also manifested in young free-floating brown dwarfs, though the effect is not as extreme. At the same time, some young objects over the full spectral type range of our sample are similar to field objects, and thus a simple correspondence between youth and magnitude offset relative to the field population appears to be lacking. Comparing the kinematics of our sample to nearby stellar associations and moving groups, we identify several new moving group members, including the first free-floating L dwarf in the AB Dor moving group, 2MASS J0355+11. Altogether, the effects of surface gravity (age) and dust content on the magnitudes and colors of substellar objects appear to be degenerate.Comment: Proceedings of Cool Stars 1

    Search for plant biomagnetism with a sensitive atomic magnetometer

    Get PDF
    We report what we believe is the first experimental limit placed on plant biomagnetism. Measurements with a sensitive atomic magnetometer were performed on the Titan arum (Amorphophallus titanum) inflorescence, known for its fast bio-chemical processes while blooming. We find that the surface magnetic field from these processes, projected along the Earth's magnetic field, and measured at the surface of the plant, is less then ~0.6uG.Comment: 5 pages, 5 figures, to be published - modified one sentence in abstract + reformatted fi
    • …
    corecore