117,916 research outputs found

    Homogenization of plain weave composites with imperfect microstructure: Part II--Analysis of real-world materials

    Full text link
    A two-layer statistically equivalent periodic unit cell is offered to predict a macroscopic response of plain weave multilayer carbon-carbon textile composites. Falling-short in describing the most typical geometrical imperfections of these material systems the original formulation presented in (Zeman and \v{S}ejnoha, International Journal of Solids and Structures, 41 (2004), pp. 6549--6571) is substantially modified, now allowing for nesting and mutual shift of individual layers of textile fabric in all three directions. Yet, the most valuable asset of the present formulation is seen in the possibility of reflecting the influence of negligible meso-scale porosity through a system of oblate spheroidal voids introduced in between the two layers of the unit cell. Numerical predictions of both the effective thermal conductivities and elastic stiffnesses and their comparison with available laboratory data and the results derived using the Mori-Tanaka averaging scheme support credibility of the present approach, about as much as the reliability of local mechanical properties found from nanoindentation tests performed directly on the analyzed composite samples.Comment: 28 pages, 14 figure

    Technologie RFID a Blochkchain v dodavatelském řetězci

    Get PDF
    The paper discusses the possibility of combining RFID and Blockchain technology to more effectively prevent counterfeiting of products or raw materials, and to solve problems related to production, logistics and storage. Linking these technologies can lead to better planning by increasing the transparency and traceability of industrial or logistical processes or such as efficient detection of critical chain sites.Příspěvek se zabývá možností kombinace technologií RFID a Blockchain pro účinnější zabránění padělání výrobků či surovin a řešení problémů spojených s výrobou, logistikou a skladováním. Spojení těchto technologií může vést k lepšímu plánování díky vyšší transparentnosti a sledovatelnosti průmyslových nebo logistických procesů, nebo například k efektivnímu zjišťování kritických míst řetězce

    Assessing and strengthening organisational resilience in a critical infrastructure system: Case study of the Slovak Republic

    Get PDF
    Critical infrastructure is a system that consists of civil infrastructures in which disruption or failure would have a serious impact on the lives and health of the population. It includes, for example, electricity, oil and gas, water supplies, communications and emergency or healthcare services. It is therefore important that technical resilience and organisational resilience is provided continuously and at a high level by the owners and operators of these civil infrastructures. Organisational resilience management mainly consists of continuously assessing determinants in order to identify weak points early so that adequate security measures can be taken to strengthen them. In the context of the above, the article presents a method for Assessing and Strengthening Organisational Resilience (ASOR Method) in a critical infrastructure system. The essence of this method lies in defining the factors that determine organisational resilience and the process of assessing and strengthening organisational resilience. The method thus allows weaknesses to be identified and the subsequent quantification of positive impacts that strengthen individual factors in organisational resilience. A benefit from applying this method is minimizing the risk and subsequent adverse impact on society of critical infrastructure system disruption or failure. The article also contributes to achieving the UN Sustainable Development Goal 9, namely Building Resilient Infrastructure. The ASOR method namely contributes to the development of quality, reliable, sustainable and resilient infrastructure, including regional and trans-border infrastructure. Finally, the article presents the results of this method's practical application on a selected electricity critical infrastructure entity in the Slovak Republic.Web of Science123art. no. UNSP 10457

    Analytical modelling in Dynamo

    Get PDF
    BIM is applied as modern database for civil engineering. Its recent development allows to preserve both structure geometrical and analytical information. The analytical model described in the paper is derived directly from BIM model of a structure automatically but in most cases it requires manual improvements before being sent to FEM software. Dynamo visual programming language was used to handle the analytical data. Authors developed a program which corrects faulty analytical model obtained from BIM geometry, thus providing better automation for preparing FEM model. Program logic is explained and test cases shown

    Strength analyses of screws for femoral neck fractures

    Get PDF
    This article represents a multidisciplinary approach to biomechanics (engineering + medicine) in the field of "collum femoris" fractures. One possible treatment method for femoral neck fractures, especially for young people, is the application of cancellous (i.e. lag or femoral) screws (with full or cannulated cross-section) made of Ti6Al4V or stainless steel. This paper therefore aims to offer our own numerical model of cancellous screws together with an assessment of them. The new, simple numerical model presented here is derived together with inputs and boundary conditions and is characterized by rapid solution. The model is based on the theory of beams on an elastic foundation and on 2nd order theory (set of three differential 4th order equations, combination of pressure and bending stress-deformation states). It presents the process for calculating displacements, slopes, bending moments, stresses etc. Two examples (i.e. combinations of cancellous screws with full or cannulated cross-section made of stainless steel or Ti6Al4V material) are presented and evaluated (i.e. their displacement, slopes, bending moments, normal forces, shearing forces and stresses). Future developments and other applications are also proposed and mentioned.Web of Science38583481

    Evaluation of an electro-pneumatic device for artificial capillary pulse generation used in a prospective study in animals for surgical neck wound healing

    Get PDF
    The paper examines the development and testing of an electro-pneumatic device for wound healing therapy after surgery in the neck area. The device generates air pressure values in a miniaturized cuff using electronic circuitry to drive an electro-valve and air compressor. The device works in two distinct modes: continuous pressure mode and pulsating pressure mode. The pressure value setting can vary from 3 to 11 mmHg, and the pulsating pressure mode's operating frequency range is approximately 0.1 to 0.3 Hz. Laboratory measurements were conducted to evaluate the device's correct functioning in both continuous and pulsating pressure modes. A four-day prospective study with animals (n = 10) was also conducted to evaluate neck wound healing therapy using the electro-pneumatic device. Out of the twelve histological parameters analysed to reveal the differences between the experimental and control wounds, only one demonstrated a significant difference. Out of the ten animals treated with the device, three showed a significant difference in terms of benefit after therapy. We can therefore conclude that the device potentially improves the wound healing process in the neck area if the pre-set air pressure value does not exceed 8 mmHg.Web of Science9art. no. 983

    Risk management standards for P5M

    Get PDF
    Risk can be managed, minimized, shared, transferred or accepted but it cannot be ignored. An effective and efficient risk management approach requires a proper and systematic methodology and, more importantly, knowledge and experience. Risk management are coordinated activities to direct and control an organization with regard to risk. Based on this definition, project risk management can be derivatively defined as coordinate activities to direct and control a project with regard to risk. In this way, it becomes an integral part of every aspect of managing the project. The goal of this paper is to present and compare the main standards for project risk management that are currently available today. Five international standards recognized world-wide were selected for comparison PMI, PRINCE2, IPMA, ISO 31000 and IEC 62198.Web of Science131341

    Evaluation of many load tests of passive rock bolts in the Czech Republic

    Get PDF
    Within the research project "FR-TI4/329 Research and development - creating an application system for the design and analysis of soil and rock anchors including the development of monitoring elements", an extensive stage of field load tests of rock bolts was carried out. The tests were conducted at 14 locations with varied rock composition. Before the initial tests, a loading stand was designed and constructed. A total of 201 pieces of tensile tests of bolts having lengths from 0.5 up to 2.5 m, a diameter of 22-32 mm, were performed. These were fully threaded rods, self-drilling rods, and fiberglass rods. The bolts were clamped into the cement and resin. The loading tests were always performed until material failure of bolts or shear stress failure at the interface cement-rock. At each location, basic geotechnical survey was carried out in the form of core drilling in a length of 3.0 metres with the assessment of the rock mass in situ, and laboratory testing of rock mechanics. Upon the completion of testing protocols, rock mass properties analysis was performed focusing on the evaluation of shear friction at the grouting-rock interface

    Diffraction Properties and Application of 3D Polymer Woodpile Photonic Crystal Structure

    Get PDF
    We present a new technique for modification of diffraction and optical properties of photonic devices by surface application of polymer Three-Dimensional (3D) woodpile Photonic Crystal (PhC) structure. Woodpile structure based on IP-Dip polymer was designed and fabricated by Direct Laser Writing (DLW) lithography method based on nonlinear Two-Photon Absorption (TPA). At first, we investigated diffraction properties of woodpile structure with a period of 2 μm. The structure was placed on a glass substrate, and diffraction patterns were measured using laser sources with different wavelengths. After diffraction properties investigation, the fabricated structures were used in optoelectronic devices by their surface application. Our polymer 3D PhC woodpile structures were used for radiation properties modification of light emitting devices - optical fiber and Light Emitting Diode (LED) and for angular photoresponse modification of InGaAsN-based photodiode. The modification of the far-field radiation patterns of optical fiber and LED and spatial modulation of light coupling into photodiode chip with applied structures were measured by goniophotometer. Quality of fabricated structures was analyzed by a Scanning Electron Microscope (SEM)

    Comparison of different electrocardiography with vectorcardiography transformations

    Get PDF
    This paper deals with transformations from electrocardiographic (ECG) to vectorcardiographic (VCG) leads. VCG provides better sensitivity, for example for the detection of myocardial infarction, ischemia, and hypertrophy. However, in clinical practice, measurement of VCG is not usually used because it requires additional electrodes placed on the patient's body. Instead, mathematical transformations are used for deriving VCG from 12-leads ECG. In this work, Kors quasi-orthogonal transformation, inverse Dower transformation, Kors regression transformation, and linear regression-based transformations for deriving P wave (PLSV) and QRS complex (QLSV) are implemented and compared. These transformation methods were not yet compared before, so we have selected them for this paper. Transformation methods were compared for the data from the Physikalisch-Technische Bundesanstalt (PTB) database and their accuracy was evaluated using a mean squared error (MSE) and a correlation coefficient (R) between the derived and directly measured Frank's leads. Based on the statistical analysis, Kors regression transformation was significantly more accurate for the derivation of the X and Y leads than the others. For the Z lead, there were no statistically significant differences in the medians between Kors regression transformation and the PLSV and QLSV methods. This paper thoroughly compared multiple VCG transformation methods to conventional VCG Frank's orthogonal lead system, used in clinical practice.Web of Science1914art. no. 307
    corecore