13,832 research outputs found

    The global integrated world ocean assessment: linking observations to science and policy across multiple scales

    Get PDF
    In 2004, the United Nations (UN) General Assembly approved a Regular Process to report on the environmental, economic and social aspects of the world's ocean. The Regular Process for Global Reporting and Assessment of the State of the Marine Environment, including Socioeconomic Aspects produced the first global integrated assessment of the marine environment in December 2016 (known as the first World Ocean Assessment). The second assessment, to be delivered in December 2020, will build on the baselines included in the first assessment, with a focus on establishing trends in the marine environment with relevance to global reporting needs such as those associated with the UN Sustainable Development Goals. Central to the assessment process and its outputs are two components. First, is the utilization of ocean observation and monitoring outputs and research to temporally assess physical, chemical, biological, social, economic and cultural components of coastal and marine environments to establish their current state, impacts currently affecting coastal and marine environments, responses to those impacts and associated ongoing trends. Second, is the knowledge brokering of ocean observations and associated research to provide key information that can be utilized and applied to address management and policy needs at local, regional and global scales. Through identifying both knowledge gaps and capacity needs, the assessment process also provides direction to policy makers for the future development and deployment of sustained observation systems that are required for enhancing knowledge and supporting national aspirations associated with the sustainable development of coastal and marine ecosystems. Input from the ocean observation community, managers and policy makers is critical for ensuring that the vital information required for supporting the science policy interface objectives of the Regular Process is included in the assessment. This community white paper discusses developments in linking ocean observations and science with policy achieved as part of the assessment process, and those required for providing strategic linkages into the future.Agência financiadora - United Nations Division for Ocean Affairs and the Law of the Seainfo:eu-repo/semantics/publishedVersio

    Embedding Population Dynamics Models in Inference

    Full text link
    Increasing pressures on the environment are generating an ever-increasing need to manage animal and plant populations sustainably, and to protect and rebuild endangered populations. Effective management requires reliable mathematical models, so that the effects of management action can be predicted, and the uncertainty in these predictions quantified. These models must be able to predict the response of populations to anthropogenic change, while handling the major sources of uncertainty. We describe a simple ``building block'' approach to formulating discrete-time models. We show how to estimate the parameters of such models from time series of data, and how to quantify uncertainty in those estimates and in numbers of individuals of different types in populations, using computer-intensive Bayesian methods. We also discuss advantages and pitfalls of the approach, and give an example using the British grey seal population.Comment: Published at http://dx.doi.org/10.1214/088342306000000673 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Temporal variability of diazotroph community composition in the upwelling region off NW Iberia.

    Get PDF
    Knowledge of the ecology of N2-fixing (diazotrophic) plankton is mainly limited to oligotrophic (sub)tropical oceans. However, diazotrophs are widely distributed and active throughout the global ocean. Likewise, relatively little is known about the temporal dynamics of diazotrophs in productive areas. Between February 2014 and December 2015, we carried out 9 one-day samplings in the temperate northwestern Iberian upwelling system to investigate the temporal and vertical variability of the diazotrophic community and its relationship with hydrodynamic forcing. In downwelling conditions, characterized by deeper mixed layers and a homogeneous water column, non-cyanobacterial diazotrophs belonging mainly to nifH clusters 1G (Gammaproteobacteria) and 3 (putative anaerobes) dominated the diazotrophic community. In upwelling and relaxation conditions, affected by enhanced vertical stratification and hydrographic variability, the community was more heterogeneous vertically but less diverse, with prevalence of UCYN-A (unicellular cyanobacteria, subcluster 1B) and non-cyanobacterial diazotrophs from clusters 1G and 3. Oligotyping analysis of UCYN-A phylotype showed that UCYN-A2 sublineage was the most abundant (74%), followed by UCYN-A1 (23%) and UCYN-A4 (2%). UCYN-A1 oligotypes exhibited relatively low frequencies during the three hydrographic conditions, whereas UCYN-A2 showed higher abundances during upwelling and relaxation. Our findings show the presence of a diverse and temporally variable diazotrophic community driven by hydrodynamic forcing in an upwelling system

    The mediterranean overflow in the Gulf of Cadiz: a rugged journey

    Get PDF
    The pathways and transformations of dense water overflows, which depend on small-scale interactions between flow dynamics and erosional-depositional processes, are a central piece in the ocean's large-scale circulation. A novel, high-resolution current and hydrographic data set highlights the intricate pathway travelled by the saline Mediterranean Overflow as it enters the Atlantic. Interaction with the topography constraints its spreading. Over the initial 200 km west of the Gibraltar gateway, distinct channels separate the initial gravity current into several plunging branches depth-sorted by density. Shallow branches follow the upper slope and eventually detach as buoyant plumes. Deeper branches occupy mid slope channels and coalesce upon reaching a diapiric ridge. A still deeper branch, guided by a lower channel wall marked by transverse furrows, experiences small-scale overflows which travel downslope to settle at mid-depths. The Mediterranean salt flux into the Atlantic has implications for the buoyancy balance in the North Atlantic. Observations on how this flux enters at different depth levels are key to accurately measuring and understanding the role of Mediterranean Outflow in future climate scenarios.project INGRES3 [CTM2010-21229]; project STOCA (IEO); project PESCADIZ (IEO); project INDEMARES [LIFE07 NAT/E/000732+]; project MOC2 [CTM2008-06438-C02-01]; project MED-OUTFLOW [CTM2008-03422-E/MAR, CTM2010-11488-E]; project PELCOSAT (IEO); project SEMANE; project DILEMA [CTM2014-59244-C3-2-R]; project INPULSE [CTM2016-75129-C3-1-R]; SISMER data center; PANGEA data center; IEO data center; ICES data center; BODC data center; NOAA data center; CONTOURIBER project [CTM2008-06399-C04-01/MAR]info:eu-repo/semantics/publishedVersio

    Vulnerability of demersal fish assemblages to trawling activities: a traits-based index

    Get PDF
    Reducing the impact on vulnerable species through changes in fishing practices, such as the spatial or temporal avoidance of certain areas, is key to increase the ecological sustainability of fisheries. However, it is often hampered by the availability of sufficiently detailed data and robust indicators. Existing trawl surveys are a cost-effective data source to assess the vulnerability of fishing areas based on the quantities of vulnerable species caught. We developed a biological traits-based approach to the vulnerability of demersal assemblages using commercial trawl catch data. An expert-based approach identified a set of biological traits that are expected to condition the species' response to trawling impact and are combined to produce the vulnerability index ranked into four levels (low, moderate, high, and very high vulnerability). The approach was tested in four southern European fishing grounds showing evidence of over-exploitation, through catches being dominated by species of relatively low vulnerability to fishing impacts. The general distribution of species' biomass amongst vulnerability groups was highly homogenous across case studies, despite local differences in fishing fleet structure, target species and fishing depths. Within all areas the species with moderate vulnerability dominated and, in most instances, species of "very high" vulnerability were not recorded. Nevertheless, differences emerged when comparing the proportions of highly vulnerable species in the catches. Variability in vulnerability level of the catch was also observed at small spatial scales, which was principally explained by differences in habitat type and depth and, secondarily, by fishing effort. In fine mud in the shallower areas there was a higher presence of low vulnerable fauna. Furthermore, vulnerable organisms decreased in their presence in sandier substrates on the continental shelf. The spatial heterogeneity in assemblage vulnerability composition encourages the potential for adoption of this index in the spatial management of fishing grounds aiming at ensuring a sustainable exploitation by mitigating trawl impacts on the most vulnerable components of the demersal assemblages.MINOUW Horizon 2020 (Project ID: 634495); H2020-Marie Skłodowska-Curie Action MSCA-IF-2016 (Project ID: 743545)info:eu-repo/semantics/publishedVersio

    An experimental study of the ecological impacts of hydraulic bivalve dredging on maerl

    Get PDF
    This paper describes the main characteristics of sardine schools detected in the Spanish-Atlantic surveys carried out from 1992 to 1997 (except 1994). A series of parameters were obtained for each school (morphological, positional and energetic) as well as environmental factors (temperature and salinity). The relationships between the school parameters were analyzed by a PCA and then the school parameters per se were described using both univariate and multivariate analyses (Box-plots, ANOVAs, MANOVA, and discriminant analysis). The results show that significant differences exist between years and geographic areas in that the Rías Baixas schools were smaller in size and of higher density than those from the Cantabric area. These differences could be related to the facts that the Rías Baixas is a nursery zone and sardine length and age are smaller than in the Cantabric Sea. It would seem that the differences in school morphology and energetic characteristics related to length and age of individuals allow us to distinguish between the sardine echo traces in this area. There is a high annual variability in the number of schools and this is not a function of either survey design or strategy and it is not related to the abundance estimates of sardine. These results are important for both future species identification and the improvement of survey design and strategy.

    Heavy metals in atmospheric deposition in Málaga (SE Spain) and the influence of African dust intrusions

    Get PDF
    This study reports information on deposition samples collected weekly at a coastal sampling site (Málaga, SE Spain) as part of a research project focused on the impact of atmospheric deposition on the Alborán Sea (W-Mediterranean). This semi-enclosed basin is a transitional area between the Atlantic Ocean and the Mediterranean. Moreover, due to its geographical location the area is frequently affected by intrusions of air masses loaded with high concentrations of atmospheric particulate matter. Major and trace metal analysis of filters and filtrates were aiming at finding the dissolved and non-dissolved fractions of the deposited material. The origin of the air masses reaching the study region was interpreted based on back-trajectories and principal component analysis was performed to find out the groups of elements with similar behaviour. Deposition fluxes at this site were marked by meteorological conditions and the external influence of other sources on a regional scale and the frequency and magnitude of African dust intrusions.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Acute-Stress Biomarkers in Three Octopodidae Species After Bottom Trawling

    Get PDF
    Several Octopodidae species have a great potential for the diversification of worldwide aquaculture. Unfortunately, the lack of stress-related biomarkers in this taxon results an obstacle for its maintenance in conditions where animal welfare is of paramount relevance. In this study, we made a first approach to uncover physiological responses related to fishing capture in Eledone moschata, Eledone cirrhosa, and Octopus vulgaris. Captured octopus from all three species were individually maintained in an aquaculture system onboard of oceanographic vessel in south-western waters of Europe. Haemolymph plasma and muscle were collected in animals at the moment of capture, and recovery was evaluated along a time-course of 48 h in Eledone spp., and 24 h for O. vulgaris. Survival rates of these species captured in spring and autumn were evaluated. Physiological parameters such as plasma pH, total CO2, peroxidase activity, lysozyme, hemocyanin, proteases, pro-phenoloxidase, anti-proteases, free amino acids, lactate and glucose levels, as well as muscle water percentage, free amino acids, lactate, glycogen and glucose values were analyzed. The immune system appears to be compromised in these species due to capture processes, while energy metabolites were mobilized to face the acute-stress situation, but recovery of all described parameters occurs within the first 24 h after capture. Moreover, this situation exerts hydric balance changes, as observed in the muscle water, being these responses depending on the species assessed. In conclusion, three Octopodidae species from south-western waters of Europe have been evaluated for stress-related biomarkers resulting in differentiated mechanisms between species. This study may pave the way to further study the physiology of stress in adult octopuses and develop new methodologies for their growth in aquaculture conditions
    corecore