20,062 research outputs found

    LDEF fiber-composite materials characterization

    Get PDF
    Degradation of a number of fiber/polymer composites located on the leading and trailing surfaces of LDEF where the atomic oxygen (AO) fluences ranged from 10(exp 22) to 10(exp 4) atoms/cm(sup 2), respectively, was observed and compared. While matrices of the composites on the leading edge generally exhibited considerable degradation and erosion-induced fragmentation, this 'asking' process was confined to the near surface regions because these degraded structures acted as a 'protective blanket' for deeper-lying regions. This finding leads to the conclusion that simple surface coatings can significantly retard AO and other combinations of degrading phenomena in low-Earth orbit. Micrometeoroid and debris particle impacts were not a prominent feature on the fiber composites studied and apparently do not contribute in a significant way to their degradation or alteration in low-Earth orbit

    Cuts and flows of cell complexes

    Get PDF
    We study the vector spaces and integer lattices of cuts and flows associated with an arbitrary finite CW complex, and their relationships to group invariants including the critical group of a complex. Our results extend to higher dimension the theory of cuts and flows in graphs, most notably the work of Bacher, de la Harpe and Nagnibeda. We construct explicit bases for the cut and flow spaces, interpret their coefficients topologically, and give sufficient conditions for them to be integral bases of the cut and flow lattices. Second, we determine the precise relationships between the discriminant groups of the cut and flow lattices and the higher critical and cocritical groups with error terms corresponding to torsion (co)homology. As an application, we generalize a result of Kotani and Sunada to give bounds for the complexity, girth, and connectivity of a complex in terms of Hermite's constant.Comment: 30 pages. Final version, to appear in Journal of Algebraic Combinatoric

    Toroidal and Klein bottle boundary slopes

    Get PDF
    Let M be a compact, connected, orientable, irreducible 3-manifold and T' an incompressible torus boundary component of M such that the pair (M,T') is not cabled. By a result of C. Gordon, if S and T are incompressible punctured tori in M with boundary on T' and boundary slopes at distance d, then d is at most 8, and the cases where d=6,7,8 are very few and classified. We give a simplified proof of this result (or rather, of its reduction process), based on an improved estimate for the maximum possible number of mutually parallel negative edges in the graphs of intersection of S and T. We also extend Gordon's result by allowing either S or T to be an essential Klein bottle. to the case where S or T is a punctured essential Klein bottle.Comment: Preliminary version, updated. We use a new approach that yields a stronger conclusion. 28 pages, 18 figure

    Superconducting Phase Transistor in Diffusive Four-terminal Ferromagnetic Josephson Junctions

    Full text link
    We study diffusive magnetic Josephson junctions with four superconducting terminals in the weak proximity limit where the leads are arranged in cross form. Employing the linearized Keldysh-Usadel technique, the anomalous Green's function and Josephson current are analytically obtained based on a quasiclassical theory using the Fourier series method. The derived results may be reduced to non-magnetic junctions by setting the exchange field equal to zero. We find that increments of the magnetic barrier thickness may cause a reversal of the supercurrent direction flowing into some of the leads, whereas the direction of current-flow remains invariant at the others. The reversal direction can be switched by tuning the perpendicular superconducting phases. In the non-magnetic case, we find that the supercurrent flowing between the leads in one direction can be tuned by changing the superconducting phase difference in the perpendicular direction. These findings suggest the possibility of constructing a nano-scale superconducting phase transistor whose core element consists of the proposed four-terminal Josephson junction with rich switching aspects.Comment: 8 pages, 3 figures. To Appear in Physical Review

    New look at the QCD ground state in a magnetic field

    Full text link
    We explore chiral symmetry breaking in a magnetic field within a Nambu-Jona-Lasinio model of interacting massless quarks including tensor channels. We show that the new interaction channels open up via Fierz identities due to the explicit breaking of the rotational symmetry by the magnetic field. We demonstrate that the magnetic catalysis of chiral symmetry breaking leads to the generation of two independent condensates, the conventional chiral condensate and a spin-one condensate. While the chiral condensate generates a dynamical fermion mass, the new condensate gives rise to a dynamical anomalous magnetic moment for the fermions. As a consequence, the spectrum of the excitations in all Landau levels, except the lowest one, exhibits Zeeman splitting. Since the pair, formed by a quark and an antiquark with opposite spins, possesses a resultant magnetic moment, an external magnetic field can align it giving rise to a net magnetic moment for the ground state. This is the physical interpretation of the spin-one condensate. Our results show that the magnetically catalyzed ground state in QCD is actually richer than previously thought. The two condensates contribute to the effective mass of the LLL quasiparticles in such a way that the critical temperature for chiral symmetry restoration becomes enhanced.Comment: PRD version with updated Reference

    Kaluza-Klein 5D Ideas Made Fully Geometric

    Full text link
    After the 1916 success of General relativity that explained gravity by adding time as a fourth dimension, physicists have been trying to explain other physical fields by adding extra dimensions. In 1921, Kaluza and Klein has shown that under certain conditions like cylindricity (gij/x5=0\partial g_{ij}/\partial x^5=0), the addition of the 5th dimension can explain the electromagnetic field. The problem with this approach is that while the model itself is geometric, conditions like cylindricity are not geometric. This problem was partly solved by Einstein and Bergman who proposed, in their 1938 paper, that the 5th dimension is compactified into a small circle S1S^1 so that in the resulting cylindric 5D space-time R4×S1R^4\times S^1 the dependence on x5x^5 is not macroscopically noticeable. We show that if, in all definitions of vectors, tensors, etc., we replace R4R^4 with R4×S1R^4\times S^1, then conditions like cylindricity automatically follow -- i.e., these conditions become fully geometric.Comment: 14 page

    Genome wide mapping reveals PDE4B as an IL-2 induced STAT5 target gene in activated human PBMCs and lymphoid cancer cells

    Get PDF
    IL-2 is the primary growth factor for promoting survival and proliferation of activated T cells that occurs following engagement of the Janus Kinase (JAK)1-3/and Signal Transducer and Activator of Transcription (STAT) 5 signaling pathway. STAT5 has two isoforms: STAT5A and STAT5B ( commonly referred to as STAT5) which, in T cells, play redundant roles transcribing cell cycle and survival genes. As such, inhibition of STAT5 by a variety of mechanisms can rapidly induce apoptosis in certain lymphoid tumor cells, suggesting that it and its target genes represent therapeutic targets to control certain lymphoid diseases. To search for these molecules we aligned IL-2 regulated genes detected by Affymetrix gene expression microarrays with the STAT5 cistrome identified by chip-on-ChIP analysis in an IL-2-dependent human leukemia cell line, Kit225. Select overlapping genes were then validated using qRT(2)PCR medium-throughput arrays in human PHA-activated PBMCs. Of 19 putative genes, one key regulator of T cell receptor signaling, PDE4B, was identified as a novel target, which was readily up-regulated at the protein level (3 h) in IL-2 stimulated, activated human PBMCs. Surprisingly, only purified CD8+ primary T-cells expressed PDE4B, but not CD4+ cells. Moreover, PDE4B was found to be highly expressed in CD4+ lymphoid cancer cells, which suggests that it may represent a physiological role unique to the CD8+ and lymphoid cancer cells and thus might represent a target for pharmaceutical intervention for certain lymphoid diseases

    Coregulator Control of Androgen Receptor Action by a Novel Nuclear Receptor-Binding Motif

    Get PDF
    The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR

    Assessing the greenness of environmental advertising claims made by multinational industrial firms

    Get PDF
    Growing skepticism about green advertisements calls for a thorough investigation of the environmental claims made by firms. This is particularly important in the context of industrial and international markets, where research on the subject is virtually non-existent. By employing legitimacy theory, this article develops several research hypotheses linking various dimensions of environmental claims made in green advertisements (i.e., focal points, evaluation areas, leverage aspects, driving forces) with advertising greenness (i.e., shallow, moderate, deep). It then tests these hypotheses with data obtained from a content analysis of 383 green magazine advertisements by multinational firms producing industrial goods. In accord with legitimacy theory, the results indicate that, the stronger the greenness of an advertisement: (a) the greater the use of focal points relating to a product, processes, image, and facts; (b) the more specific, strong, substantive, and acceptable are the issues raised; (c) the higher the employment of rational, emotional, and moral points to leverage environmental matters; and (d) the sharper the driving forces relating to the planet and its flora, fauna, and human entities. Several important conclusions, managerial implications, and directions for future research are derived from these findings

    Are cultured human myotubes far from home?

    Get PDF
    Satellite cells can be isolated from skeletal muscle biopsies, activated to proliferating myoblasts and differentiated into multinuclear myotubes in culture. These cell cultures represent a model system for intact human skeletal muscle and can be modulated ex vivo. The advantages of this system are that the most relevant genetic background is available for the investigation of human disease (as opposed to rodent cell cultures), the extracellular environment can be precisely controlled and the cells are not immortalized, thereby offering the possibility of studying innate characteristics of the donor. Limitations in differentiation status (fiber type) of the cells and energy metabolism can be improved by proper treatment, such as electrical pulse stimulation to mimic exercise. This review focuses on the way that human myotubes can be employed as a tool for studying metabolism in skeletal muscles, with special attention to changes in muscle energy metabolism in obesity and type 2 diabetes
    corecore