17,786 research outputs found

    Sellers Competing for Buyers in Online Markets

    Get PDF
    We consider competition between sellers offering similar items in concurrent online auctions, where each seller must set its individual auction parameters (such as the reserve price) in such a way as to attract buyers. We show that there exists a pure Nash equilibrium in the case of two sellers with asymmetric production costs. In addition, we show that, rather than setting a reserve price, a seller can further improve its utility by shill bidding (i.e., pretending to be a buyer in order to bid in its own auction). But, using an evolutionary simulation, we show that this shill bidding introduces inefficiencies within the market. However, we then go on to show that these inefficiencies can be reduced when the mediating auction institution uses appropriate auction fees that deter sellers from submitting shill bids

    Artificial life meets computational creativity?

    Get PDF
    I review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity

    An Improved Approximation Algorithm for the Hard Uniform Capacitated k-median Problem

    Full text link
    In the kk-median problem, given a set of locations, the goal is to select a subset of at most kk centers so as to minimize the total cost of connecting each location to its nearest center. We study the uniform hard capacitated version of the kk-median problem, in which each selected center can only serve a limited number of locations. Inspired by the algorithm of Charikar, Guha, Tardos and Shmoys, we give a (6+10α)(6+10\alpha)-approximation algorithm for this problem with increasing the capacities by a factor of 2+2α,α42+\frac{2}{\alpha}, \alpha\geq 4, which improves the previous best (32l2+28l+7)(32 l^2+28 l+7)-approximation algorithm proposed by Byrka, Fleszar, Rybicki and Spoerhase violating the capacities by factor 2+3l1,l{2,3,4,}2+\frac{3}{l-1}, l\in \{2,3,4,\dots\}.Comment: 19 pages, 1 figur

    Improved Lower Bounds for Testing Triangle-freeness in Boolean Functions via Fast Matrix Multiplication

    Get PDF
    Understanding the query complexity for testing linear-invariant properties has been a central open problem in the study of algebraic property testing. Triangle-freeness in Boolean functions is a simple property whose testing complexity is unknown. Three Boolean functions f1f_1, f2f_2 and f3:F2k{0,1}f_3: \mathbb{F}_2^k \to \{0, 1\} are said to be triangle free if there is no x,yF2kx, y \in \mathbb{F}_2^k such that f1(x)=f2(y)=f3(x+y)=1f_1(x) = f_2(y) = f_3(x + y) = 1. This property is known to be strongly testable (Green 2005), but the number of queries needed is upper-bounded only by a tower of twos whose height is polynomial in 1 / \epsislon, where \epsislon is the distance between the tested function triple and triangle-freeness, i.e., the minimum fraction of function values that need to be modified to make the triple triangle free. A lower bound of (1/ϵ)2.423(1 / \epsilon)^{2.423} for any one-sided tester was given by Bhattacharyya and Xie (2010). In this work we improve this bound to (1/ϵ)6.619(1 / \epsilon)^{6.619}. Interestingly, we prove this by way of a combinatorial construction called \emph{uniquely solvable puzzles} that was at the heart of Coppersmith and Winograd's renowned matrix multiplication algorithm

    Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

    Get PDF
    A hypergraph is said to be χ\chi-colorable if its vertices can be colored with χ\chi colors so that no hyperedge is monochromatic. 22-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 22-colorable kk-uniform hypergraph, it is NP-hard to find a 22-coloring miscoloring fewer than a fraction 2k+12^{-k+1} of hyperedges (which is achieved by a random 22-coloring), and the best algorithms to color the hypergraph properly require n11/k\approx n^{1-1/k} colors, approaching the trivial bound of nn as kk increases. In this work, we study the complexity of approximate hypergraph coloring, for both the maximization (finding a 22-coloring with fewest miscolored edges) and minimization (finding a proper coloring using fewest number of colors) versions, when the input hypergraph is promised to have the following stronger properties than 22-colorability: (A) Low-discrepancy: If the hypergraph has discrepancy k\ell \ll \sqrt{k}, we give an algorithm to color the it with nO(2/k)\approx n^{O(\ell^2/k)} colors. However, for the maximization version, we prove NP-hardness of finding a 22-coloring miscoloring a smaller than 2O(k)2^{-O(k)} (resp. kO(k)k^{-O(k)}) fraction of the hyperedges when =O(logk)\ell = O(\log k) (resp. =2\ell=2). Assuming the UGC, we improve the latter hardness factor to 2O(k)2^{-O(k)} for almost discrepancy-11 hypergraphs. (B) Rainbow colorability: If the hypergraph has a (k)(k-\ell)-coloring such that each hyperedge is polychromatic with all these colors, we give a 22-coloring algorithm that miscolors at most kΩ(k)k^{-\Omega(k)} of the hyperedges when k\ell \ll \sqrt{k}, and complement this with a matching UG hardness result showing that when =k\ell =\sqrt{k}, it is hard to even beat the 2k+12^{-k+1} bound achieved by a random coloring.Comment: Approx 201

    A complexity dichotomy for poset constraint satisfaction

    Get PDF
    In this paper we determine the complexity of a broad class of problems that extends the temporal constraint satisfaction problems. To be more precise we study the problems Poset-SAT(Φ\Phi), where Φ\Phi is a given set of quantifier-free \leq-formulas. An instance of Poset-SAT(Φ\Phi) consists of finitely many variables x1,,xnx_1,\ldots,x_n and formulas ϕi(xi1,,xik)\phi_i(x_{i_1},\ldots,x_{i_k}) with ϕiΦ\phi_i \in \Phi; the question is whether this input is satisfied by any partial order on x1,,xnx_1,\ldots,x_n or not. We show that every such problem is NP-complete or can be solved in polynomial time, depending on Φ\Phi. All Poset-SAT problems can be formalized as constraint satisfaction problems on reducts of the random partial order. We use model-theoretic concepts and techniques from universal algebra to study these reducts. In the course of this analysis we establish a dichotomy that we believe is of independent interest in universal algebra and model theory.Comment: 29 page

    Deciding Circular-Arc Graph Isomorphism in Parameterized Logspace

    Get PDF
    We compute a canonical circular-arc representation for a given circular-arc (CA) graph which implies solving the isomorphism and recognition problem for this class. To accomplish this we split the class of CA graphs into uniform and non-uniform ones and employ a generalized version of the argument given by K\"obler et al (2013) that has been used to show that the subclass of Helly CA graphs can be canonized in logspace. For uniform CA graphs our approach works in logspace and in addition to that Helly CA graphs are a strict subset of uniform CA graphs. Thus our result is a generalization of the canonization result for Helly CA graphs. In the non-uniform case a specific set of ambiguous vertices arises. By choosing the parameter to be the cardinality of this set the obstacle can be solved by brute force. This leads to an O(k + log n) space algorithm to compute a canonical representation for non-uniform and therefore all CA graphs.Comment: 14 pages, 3 figure

    A Quasi-Random Approach to Matrix Spectral Analysis

    Get PDF
    Inspired by the quantum computing algorithms for Linear Algebra problems [HHL,TaShma] we study how the simulation on a classical computer of this type of "Phase Estimation algorithms" performs when we apply it to solve the Eigen-Problem of Hermitian matrices. The result is a completely new, efficient and stable, parallel algorithm to compute an approximate spectral decomposition of any Hermitian matrix. The algorithm can be implemented by Boolean circuits in O(log2n)O(\log^2 n) parallel time with a total cost of O(nω+1)O(n^{\omega+1}) Boolean operations. This Boolean complexity matches the best known rigorous O(log2n)O(\log^2 n) parallel time algorithms, but unlike those algorithms our algorithm is (logarithmically) stable, so further improvements may lead to practical implementations. All previous efficient and rigorous approaches to solve the Eigen-Problem use randomization to avoid bad condition as we do too. Our algorithm makes further use of randomization in a completely new way, taking random powers of a unitary matrix to randomize the phases of its eigenvalues. Proving that a tiny Gaussian perturbation and a random polynomial power are sufficient to ensure almost pairwise independence of the phases (mod(2π))(\mod (2\pi)) is the main technical contribution of this work. This randomization enables us, given a Hermitian matrix with well separated eigenvalues, to sample a random eigenvalue and produce an approximate eigenvector in O(log2n)O(\log^2 n) parallel time and O(nω)O(n^\omega) Boolean complexity. We conjecture that further improvements of our method can provide a stable solution to the full approximate spectral decomposition problem with complexity similar to the complexity (up to a logarithmic factor) of sampling a single eigenvector.Comment: Replacing previous version: parallel algorithm runs in total complexity nω+1n^{\omega+1} and not nωn^{\omega}. However, the depth of the implementing circuit is log2(n)\log^2(n): hence comparable to fastest eigen-decomposition algorithms know

    First-order definable string transformations

    Get PDF
    The connection between languages defined by computational models and logic for languages is well-studied. Monadic second-order logic and finite automata are shown to closely correspond to each-other for the languages of strings, trees, and partial-orders. Similar connections are shown for first-order logic and finite automata with certain aperiodicity restriction. Courcelle in 1994 proposed a way to use logic to define functions over structures where the output structure is defined using logical formulas interpreted over the input structure. Engelfriet and Hoogeboom discovered the corresponding "automata connection" by showing that two-way generalised sequential machines capture the class of monadic-second order definable transformations. Alur and Cerny further refined the result by proposing a one-way deterministic transducer model with string variables---called the streaming string transducers---to capture the same class of transformations. In this paper we establish a transducer-logic correspondence for Courcelle's first-order definable string transformations. We propose a new notion of transition monoid for streaming string transducers that involves structural properties of both underlying input automata and variable dependencies. By putting an aperiodicity restriction on the transition monoids, we define a class of streaming string transducers that captures exactly the class of first-order definable transformations.Comment: 31 page

    Fast Detour Computation for Ride Sharing

    Get PDF
    Todays ride sharing services still mimic a better billboard. They list the offers and allow to search for the source and target city, sometimes enriched with radial search. So finding a connection between big cities is quite easy. These places are on a list of designated origin and distination points. But when you want to go from a small town to another small town, even when they are next to a freeway, you run into problems. You can't find offers that would or could pass by the town easily with little or no detour. We solve this interesting problem by presenting a fast algorithm that computes the offers with the smallest detours w.r.t. a request. Our experiments show that the problem is efficiently solvable in times suitable for a web service implementation. For realistic database size we achieve lookup times of about 5ms and a matching rate of 90% instead of just 70% for the simple matching algorithms used today.Comment: 5 pages, 2 figure environment, 4 includegraphic
    corecore