5,561 research outputs found

    Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial.

    Get PDF
    IMPORTANCE: Glioblastoma is the most devastating primary malignancy of the central nervous system in adults. Most patients die within 1 to 2 years of diagnosis. Tumor-treating fields (TTFields) are a locoregionally delivered antimitotic treatment that interferes with cell division and organelle assembly. OBJECTIVE: To evaluate the efficacy and safety of TTFields used in combination with temozolomide maintenance treatment after chemoradiation therapy for patients with glioblastoma. DESIGN, SETTING, AND PARTICIPANTS: After completion of chemoradiotherapy, patients with glioblastoma were randomized (2:1) to receive maintenance treatment with either TTFields plus temozolomide (n = 466) or temozolomide alone (n = 229) (median time from diagnosis to randomization, 3.8 months in both groups). The study enrolled 695 of the planned 700 patients between July 2009 and November 2014 at 83 centers in the United States, Canada, Europe, Israel, and South Korea. The trial was terminated based on the results of this planned interim analysis. INTERVENTIONS: Treatment with TTFields was delivered continuously (>18 hours/day) via 4 transducer arrays placed on the shaved scalp and connected to a portable medical device. Temozolomide (150-200 mg/m2/d) was given for 5 days of each 28-day cycle. MAIN OUTCOMES AND MEASURES: The primary end point was progression-free survival in the intent-to-treat population (significance threshold of .01) with overall survival in the per-protocol population (n = 280) as a powered secondary end point (significance threshold of .006). This prespecified interim analysis was to be conducted on the first 315 patients after at least 18 months of follow-up. RESULTS: The interim analysis included 210 patients randomized to TTFields plus temozolomide and 105 randomized to temozolomide alone, and was conducted at a median follow-up of 38 months (range, 18-60 months). Median progression-free survival in the intent-to-treat population was 7.1 months (95% CI, 5.9-8.2 months) in the TTFields plus temozolomide group and 4.0 months (95% CI, 3.3-5.2 months) in the temozolomide alone group (hazard ratio [HR], 0.62 [98.7% CI, 0.43-0.89]; P = .001). Median overall survival in the per-protocol population was 20.5 months (95% CI, 16.7-25.0 months) in the TTFields plus temozolomide group (n = 196) and 15.6 months (95% CI, 13.3-19.1 months) in the temozolomide alone group (n = 84) (HR, 0.64 [99.4% CI, 0.42-0.98]; P = .004). CONCLUSIONS AND RELEVANCE: In this interim analysis of 315 patients with glioblastoma who had completed standard chemoradiation therapy, adding TTFields to maintenance temozolomide chemotherapy significantly prolonged progression-free and overall survival. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00916409

    miR-199b, a novel tumor suppressor miRNA in acute myeloid leukemia with prognostic implications

    Get PDF
    Additional file 1: Figure S1. miR-199b-5p targets HIF-1 alpha. Transcript levels of three predicted targets of miR-199b were tested via RT-qPCR in miR-199b silenced CD34 cells and HIF-1a levels were significantly increased by anti-miR-199b

    A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development

    Get PDF
    PMCID: PMC4560637Breast cancer is a major cause of mortality in women. The transcription factor SNAI2 has been implicated in the pathogenesis of several types of cancer, including breast cancer of basal origin. Here we show that SNAI2 is also important in the development of breast cancer of luminal origin in MMTV-ErbB2 mice. SNAI2 deficiency leads to longer latency and fewer luminal tumors, both of these being characteristics of pretumoral origin. These effects were associated with reduced proliferation and a decreased ability to generate mammospheres in normal mammary glands. However, the capacity to metastasize was not modified. Under conditions of increased ERBB2 oncogenic activity after pregnancy plus SNAI2 deficiency, both pretumoral defects - latency and tumor load - were compensated. However, the incidence of lung metastases was dramatically reduced. Furthermore, SNAI2 was required for proper postlactational involution of the breast. At 3 days post lactational involution, the mammary glands of Snai2-deficient mice exhibited lower levels of pSTAT3 and higher levels of pAKT1, resulting in decreased apoptosis. Abundant noninvoluted ducts were still present at 30 days post lactation, with a greater number of residual ERBB2+ cells. These results suggest that this defect in involution leads to an increase in the number of susceptible target cells for transformation, to the recovery of the capacity to generate mammospheres and to an increase in the number of tumors. Our work demonstrates the participation of SNAI2 in the pathogenesis of luminal breast cancer, and reveals an unexpected connection between the processes of postlactational involution and breast tumorigenesis in Snai2-null mutant mice.JPL was partially supported by FEDER and MICINN (PLE2009-119, SAF2014-56989-R), Instituto de Salud Carlos III (PI07/0057, PI10/00328, PIE14/00066), Junta de Castilla y León (SAN673/SA26/08, SAN126/SA66/09, SA078A09, CSI034U13), the “Fundación Eugenio Rodríguez Pascual”, the “Fundación Inbiomed” (Instituto Oncológico Obra Social de la Caja Guipozcoa-San Sebastian, Kutxa), and the “Fundación Sandra Ibarra de Solidaridad frente al Cáncer”. AC was supported by FIS (PI07/0057) and MICINN (PLE2009-119). SCLL was funded by a JAEdoc Fellowship (CSIC)/FSE. MMSF and ABG are funded by fellowships from the Junta de Castilla y Leon. JHM was supported by the National Institutes of Health, a National Cancer Institute grant (R01 CA116481), and the Low-Dose Scientific Focus Area, Office of Biological & Environmental Research, US Department of Energy (DE-AC02-05CH11231).Peer Reviewe

    A three-talk model for shared decision making: multistage consultation process

    Get PDF
    © 2017 The Authors. Published by BMJ. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1136/bmj.j4891Objectives To revise an existing three-talk model for learning how to achieve shared decision making, and to consult with relevant stakeholders to update and obtain wider engagement. Design Multistage consultation process. Setting Key informant group, communities of interest, and survey of clinical specialties. Participants 19 key informants, 153 member responses from multiple communities of interest, and 316 responses to an online survey from medically qualified clinicians from six specialties. Results After extended consultation over three iterations, we revised the three-talk model by making changes to one talk category, adding the need to elicit patient goals, providing a clear set of tasks for each talk category, and adding suggested scripts to illustrate each step. A new three-talk model of shared decision making is proposed, based on “team talk,” “option talk,” and “decision talk,” to depict a process of collaboration and deliberation. Team talk places emphasis on the need to provide support to patients when they are made aware of choices, and to elicit their goals as a means of guiding decision making processes. Option talk refers to the task of comparing alternatives, using risk communication principles. Decision talk refers to the task of arriving at decisions that reflect the informed preferences of patients, guided by the experience and expertise of health professionals. Conclusions The revised three-talk model of shared decision making depicts conversational steps, initiated by providing support when introducing options, followed by strategies to compare and discuss trade-offs, before deliberation based on informed preferences

    A phase II evaluation of cediranib in the treatment of recurrent or persistent endometrial cancer: An NRG Oncology/Gynecologic Oncology Group study

    Get PDF
    PURPOSE: Cediranib is a multi-tyrosine kinase inhibitor targeting vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF) receptors. This phase II study was conducted to assess activity and tolerability of single-agent cediranib in recurrent/persistent endometrial cancer. PATIENTS AND METHODS: Eligible patients had recurrent or persistent endometrial cancer after receiving one or two prior cytotoxic regimens, measurable disease, and Gynecologic Oncology Group (GOG) performance status of ≤2 (≤1 if two prior cytotoxic regimens given). Cediranib 30mg orally daily for a 28daycycle was administered until disease progression or prohibitive toxicity. Microvessel density (MVD) was measured in tumor tissue from initial hysterectomy specimens and correlated with clinical outcome. Primary endpoints were tumor response and surviving progression-free for six months without subsequent therapy (6-month event-free survival [EFS]). RESULTS: Of 53 patients enrolled, 48 were evaluable for cediranib efficacy and toxicity. Median age was 65.5 years, 52% of patients had received prior radiation, and 73% of patients received only one prior chemotherapy regimen. A partial response was observed in 12.5%. Fourteen patients (29%) had six-month EFS. Median progression-free survival (PFS) was 3.65 months and median overall survival (OS) 12.5 months. No grade 4 or 5 toxicities were observed. A trend towards improved PFS was found in patients whose tumors expressed high MVD. CONCLUSION: Cediranib as a monotherapy treatment for recurrent or persistent endometrial cancer is well tolerated and met protocol set objectives for sufficient activity to warrant further investigation. MVD may be a useful biomarker for activity

    Genomic imprinting variations in the mouse type 3 deiodinase gene between tissues and brain regions.

    Get PDF
    The Dio3 gene, which encodes for the type 3 deiodinase (D3), controls thyroid hormone (TH) availability. The lack of D3 in mice results in tissue overexposure to TH and a broad neuroendocrine phenotype. Dio3 is an imprinted gene, preferentially expressed from the paternally inherited allele in the mouse fetus. However, heterozygous mice with paternal inheritance of the inactivating Dio3 mutation exhibit an attenuated phenotype when compared with that of Dio3 null mice. To investigate this milder phenotype, the allelic expression of Dio3 was evaluated in different mouse tissues. Preferential allelic expression of Dio3 from the paternal allele was observed in fetal tissues and neonatal brain regions, whereas the biallelic Dio3 expression occurred in the developing eye, testes, and cerebellum and in the postnatal brain neocortex, which expresses a larger Dio3 mRNA transcript. The newborn hypothalamus manifests the highest degree of Dio3 expression from the paternal allele, compared with other brain regions, and preferential allelic expression of Dio3 in the brain relaxed in late neonatal life. A methylation analysis of two regulatory regions of the Dio3 imprinted domain revealed modest but significant differences between tissues, but these did not consistently correlate with the observed patterns of Dio3 allelic expression. Deletion of the Dio3 gene and promoter did not result in significant changes in the tissue-specific patterns of Dio3 allelic expression. These results suggest the existence of unidentified epigenetic determinants of tissue-specific Dio3 imprinting. The resulting variation in the Dio3 allelic expression between tissues likely explains the phenotypic variation that results from paternal Dio3 haploinsufficiency.This is the final version of the article. It is available from the Endocrine Society in Molecular Endocrinology here: http://press.endocrine.org/doi/pdf/10.1210/me.2014-1210

    Diet and gene interactions influence the skeletal response to polyunsaturated fatty acids.

    Get PDF
    Diets rich in omega-3s have been thought to prevent both obesity and osteoporosis. However, conflicting findings are reported, probably as a result of gene by nutritional interactions. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor that improves insulin sensitivity but causes weight gain and bone loss. Fish oil is a natural agonist for PPARγ and thus may exert its actions through the PPARγ pathway. We examined the role of PPARγ in body composition changes induced by a fish or safflower oil diet using two strains of C57BL/6J (B6); i.e. B6.C3H-6T (6T) congenic mice created by backcrossing a small locus on Chr 6 from C3H carrying 'gain of function' polymorphisms in the Pparγ gene onto a B6 background, and C57BL/6J mice. After 9months of feeding both diets to female mice, body weight, percent fat and leptin levels were less in mice fed the fish oil vs those fed safflower oil, independent of genotype. At the skeletal level, fish oil preserved vertebral bone mineral density (BMD) and microstructure in B6 but not in 6T mice. Moreover, fish oil consumption was associated with an increase in bone marrow adiposity and a decrease in BMD, cortical thickness, ultimate force and plastic energy in femur of the 6T but not the B6 mice. These effects paralleled an increase in adipogenic inflammatory and resorption markers in 6T but not B6. Thus, compared to safflower oil, fish oil (high ratio omega-3/-6) prevents weight gain, bone loss, and changes in trabecular microarchitecture in the spine with age. These beneficial effects are absent in mice with polymorphisms in the Pparγ gene (6T), supporting the tenet that the actions of n-3 fatty acids on bone microstructure are likely to be genotype dependent. Thus caution must be used in interpreting dietary intervention trials with skeletal endpoints in mice and in humans

    Suppression of Spry4 enhances cancer stem cell properties of human MDA-MB-231 breast carcinoma cells

    Get PDF
    BACKGROUND: Cancer stem cells contribute to tumor initiation, heterogeneity, and recurrence, and are critical targets in cancer therapy. Sprouty4 (Spry4) is a potent inhibitor of signal transduction pathways elicited by receptor tyrosine kinases, and has roles in regulating cell proliferation, migration and differentiation. Spry4 has been implicated as a tumor suppressor and in modulating embryonic stem cells. OBJECTIVES: The purpose of this research was to test the novel idea that Spry4 regulates cancer stem cell properties in breast cancer. METHODS: Loss-of function of Spry4 in human MDA-MB-231 cell was used to test our hypothesis. Spry4 knockdown or control cell lines were generated using lentiviral delivery of human Spry4 or non-targeting control shRNAs, and then selected with 2 μg/ml puromycin. Cell growth and migratory abilities were determined using growth curve and cell cycle flow cytometry analyses and scratch assays, respectively. Xenograft tumor model was used to determine the tumorigenic activity and metastasis in vivo. Cancer stem cell related markers were evaluated using immunoblotting assays and fluorescence-activated cell sorting. Cancer stem cell phenotype was evaluated using in vitro mammosphere formation and drug sensitivity tests, and in vivo limiting dilution tumor formation assay. RESULTS: Two out of three tested human Spry4 shRNAs significantly suppressed the expression of endogenous Spry4 in MDA-MB-231 cells. Suppressing Spry4 expression increased MDA-MB-231 cell proliferation and migration. Suppressing Spry4 increased β3-integrin expression, and CD133(+)CD44(+) subpopulation. Suppressing Spry4 increased mammosphere formation, while decreasing the sensitivity of MDA-MB-231 cells to Paclitaxel treatment. Finally, suppressing Spry4 increased the potency of MDA-MB-231 cell tumor initiation, a feature attributed to cancer stem cells. CONCLUSIONS: Our findings provide novel evidence that endogenous Spry4 may have tumor suppressive activity in breast cancer by suppressing cancer stem cell properties in addition to negative effects on tumor cell proliferation and migration

    SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive.</p> <p>Methods</p> <p>Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively.</p> <p>Research</p> <p>We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth.</p> <p>Conclusion</p> <p>We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis.</p
    corecore