257,400 research outputs found

    Sensitivity of wardrop equilibria

    Get PDF
    We study the sensitivity of equilibria in the well-known game theoretic traffic model due to Wardrop. We mostly consider single-commodity networks. Suppose, given a unit demand flow at Wardrop equilibrium, one increases the demand by ε or removes an edge carrying only an ε-fraction of flow. We study how the equilibrium responds to such an ε-change. Our first surprising finding is that, even for linear latency functions, for every ε> 0, there are networks in which an ε-change causes every agent to change its path in order to recover equilibrium. Nevertheless, we can prove that, for general latency functions, the flow increase or decrease on every edge is at most ε. Examining the latency at equilibrium, we concentrate on polynomial latency functions of degree at most p with nonnegative coefficients. We show that, even though the relative increase in the latency of an edge due to an ε-change in the demand can be unbounded, the path latency at equilibrium increases at most by a factor of (1 + ε) p . The increase of the price of anarchy is shown to be upper bounded by the same factor. Both bounds are shown to be tight. Let us remark that all our bounds are tight. For the multi-commodity case, we present examples showing that neither the change in edge flows nor the change in the path latency can be bounded

    Locally Stable Marriage with Strict Preferences

    Full text link
    We study stable matching problems with locality of information and control. In our model, each agent is a node in a fixed network and strives to be matched to another agent. An agent has a complete preference list over all other agents it can be matched with. Agents can match arbitrarily, and they learn about possible partners dynamically based on their current neighborhood. We consider convergence of dynamics to locally stable matchings -- states that are stable with respect to their imposed information structure in the network. In the two-sided case of stable marriage in which existence is guaranteed, we show that the existence of a path to stability becomes NP-hard to decide. This holds even when the network exists only among one partition of agents. In contrast, if one partition has no network and agents remember a previous match every round, a path to stability is guaranteed and random dynamics converge with probability 1. We characterize this positive result in various ways. For instance, it holds for random memory and for cache memory with the most recent partner, but not for cache memory with the best partner. Also, it is crucial which partition of the agents has memory. Finally, we present results for centralized computation of locally stable matchings, i.e., computing maximum locally stable matchings in the two-sided case and deciding existence in the roommates case.Comment: Conference version in ICALP 2013; to appear in SIAM J. Disc Mat

    On the dependence of the leak-rate of seals on the skewness of the surface height probability distribution

    Full text link
    Seals are extremely useful devices to prevent fluid leakage. We present experimental result which show that the leak-rate of seals depend sensitively on the skewness in the height probability distribution. The experimental data are analyzed using the critical-junction theory. We show that using the top-power spectrum result in good agreement between theory and experiment.Comment: 5 pages, 9 figure

    Topological surface state under graphene for two-dimensional spintronics in air

    Get PDF
    Spin currents which allow for a dissipationless transport of information can be generated by electric fields in semiconductor heterostructures in the presence of a Rashba-type spin-orbit coupling. The largest Rashba effects occur for electronic surface states of metals but these cannot exist but under ultrahigh vacuum conditions. Here, we reveal a giant Rashba effect ({\alpha}_R ~ 1.5E-10 eVm) on a surface state of Ir(111). We demonstrate that its spin splitting and spin polarization remain unaffected when Ir is covered with graphene. The graphene protection is, in turn, sufficient for the spin-split surface state to survive in ambient atmosphere. We discuss this result along with evidences for a topological protection of the surface state.Comment: includes supplementary informatio

    Computer Algebra meets Finite Elements: an Efficient Implementation for Maxwell's Equations

    Full text link
    We consider the numerical discretization of the time-domain Maxwell's equations with an energy-conserving discontinuous Galerkin finite element formulation. This particular formulation allows for higher order approximations of the electric and magnetic field. Special emphasis is placed on an efficient implementation which is achieved by taking advantage of recurrence properties and the tensor-product structure of the chosen shape functions. These recurrences have been derived symbolically with computer algebra methods reminiscent of the holonomic systems approach.Comment: 16 pages, 1 figure, 1 table; Springer Wien, ISBN 978-3-7091-0793-

    Algorithmic Thomas Decomposition of Algebraic and Differential Systems

    Full text link
    In this paper, we consider systems of algebraic and non-linear partial differential equations and inequations. We decompose these systems into so-called simple subsystems and thereby partition the set of solutions. For algebraic systems, simplicity means triangularity, square-freeness and non-vanishing initials. Differential simplicity extends algebraic simplicity with involutivity. We build upon the constructive ideas of J. M. Thomas and develop them into a new algorithm for disjoint decomposition. The given paper is a revised version of a previous paper and includes the proofs of correctness and termination of our decomposition algorithm. In addition, we illustrate the algorithm with further instructive examples and describe its Maple implementation together with an experimental comparison to some other triangular decomposition algorithms.Comment: arXiv admin note: substantial text overlap with arXiv:1008.376

    Convergence to equilibrium under a random Hamiltonian

    Get PDF
    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.Comment: 11 pages, 1 figure, v1-v3: some minor errors and typos corrected and new references added; v4: results for the degenerated spectrum added; v5: reorganized and rewritten version; to appear in PR

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Implicit-Explicit Runge-Kutta schemes for numerical discretization of optimal control problems

    Full text link
    Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and non-stiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge-Kutta methods in the context of optimal control problems. The analysis of the schemes is based on the continuous optimality system. Using suitable transformations of the adjoint equation, order conditions up to order three are proven as well as the relation between adjoint schemes obtained through different transformations is investigated. Conditions for the IMEX Runge-Kutta methods to be symplectic are also derived. A numerical example illustrating the theoretical properties is presented

    Dark-matter particles and baryons from inflation and spontaneous CP violation in the early universe

    Full text link
    We present aspects of a model which attempts to unify the creation of cold dark matter, a CP-violating baryon asymmetry, and also a small, residual vacuum energy density, in the early universe. The model contains a primary scalar (inflaton) field and a primary pseudoscalar field, which are initially related by a cosmological, chiral symmetry. The nonzero vacuum expectation value of the pseudoscalar field spontaneously breaks CP invariance.Comment: 7 pages, appendix adde
    • …
    corecore