3,567 research outputs found

    Activities of bone morphogenetic proteins in prolactin regulation by somatostatin analogs in rat pituitary GH3 cells

    Get PDF
    Involvement of the pituitary BMP system in the modulation of prolactin (PRL) secretion regulated by somatostatin analogs, including octreotide (OCT) and pasireotide (SOM230), and a dopamine agonist, bromocriptine (BRC), was examined in GH3 cells. GH3 cells are rat pituitary somato-lactotrope tumor cells that express somatostatin receptors (SSTRs) and BMP system molecules including BMP-4 and -6. Treatment with BMP-4 and -6 increased PRL and cAMP secretion by GH3 cells. The BMP-4 effects were neutralized by adding a BMP-binding protein Noggin. These findings suggest the activity of endogenous BMPs in augmenting PRL secretion by GH3 cells. BRC and SOM230 reduced PRL secretion, but OCT failed to reduce the PRL level. In GH3 cells activated by forskolin, BRC suppressed forskolin-induced PRL secretion with reduction in cAMP levels. OCT did not affect forskolin-induced PRL level, while SOM230 reduced PRL secretion and PRL mRNA expression induced by forskolin. BMP-4 treatment enhanced the reducing effect of SOM230 on forskolin-induced PRL level while BMP-4 did not affect the effects of OCT or BRC. Noggin treatment had no significant effect on the BRC actions reducing PRL levels by GH3 cells. However, in the presence of Noggin, OCT elicited an inhibitory effect on forskolin-induced PRL secretion and PRL mRNA expression, whereas the SOM230 effect on PRL reduction was in turn impaired. It was further found that BMP-4 and -6 suppressed SSTR-2 but increased SSTR-5 mRNA expression of GH3 cells. These findings indicate that Noggin rescues SSTR-2 but downregulates SSTR-5 by neutralizing endogenous BMP actions, leading to an increase in OCT sensitivity and a decrease in SOM230 sensitivity of GH3 cells. In addition, BMP signaling was facilitated in GH3 cells treated with forskolin. Collectively, these findings suggest that BMPs elicit differential actions in the regulation of PRL release dependent on cellular cAMP-PKA activity. BMPs may play a key role in the modulation of SSTR sensitivity of somato-lactotrope cells in an autocrine/paracrine manner

    CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry.

    Get PDF
    Hepatitis C virus (HCV) is an enveloped positive-stranded RNA hepatotropic virus. HCV pseudoparticles infect liver-derived cells, supporting a model in which liver-specific molecules define HCV internalization. Three host cell molecules have been reported to be important entry factors or receptors for HCV internalization: scavenger receptor BI, the tetraspanin CD81, and the tight junction protein claudin-1 (CLDN1). None of the receptors are uniquely expressed within the liver, leading us to hypothesize that their organization within hepatocytes may explain receptor activity. Since CD81 and CLDN1 act as coreceptors during late stages in the entry process, we investigated their association in a variety of cell lines and human liver tissue. Imaging techniques that take advantage of fluorescence resonance energy transfer (FRET) to study protein-protein interactions have been developed. Aequorea coerulescens green fluorescent protein- and Discosoma sp. red-monomer fluorescent protein-tagged forms of CD81 and CLDN1 colocalized, and FRET occurred between the tagged coreceptors at comparable frequencies in permissive and nonpermissive cells, consistent with the formation of coreceptor complexes. FRET occurred between antibodies specific for CD81 and CLDN1 bound to human liver tissue, suggesting the presence of coreceptor complexes in liver tissue. HCV infection and treatment of Huh-7.5 cells with recombinant HCV E1-E2 glycoproteins and anti-CD81 monoclonal antibody modulated homotypic (CD81-CD81) and heterotypic (CD81-CLDN1) coreceptor protein association(s) at specific cellular locations, suggesting distinct roles in the viral entry process

    Elevated expression of the chemokine-scavenging receptor D6 is associated with impaired lesion development in psoriasis

    Get PDF
    D6 is a scavenging-receptor for inflammatory CC chemokines that are essential for resolution of inflammatory responses in mice. Here, we demonstrate that D6 plays a central role in controlling cutaneous inflammation, and that D6 deficiency is associated with development of a psoriasis-like pathology in response to varied inflammatory stimuli in mice. Examination of D6 expression in human psoriatic skin revealed markedly elevated expression in both the epidermis and lymphatic endothelium in "uninvolved" psoriatic skin (ie, skin that was more than 8 cm distant from psoriatic plaques). Notably, this increased D6 expression is associated with elevated inflammatory chemokine expression, but an absence of plaque development, in uninvolved skin. Along with our previous observations of the ability of epidermally expressed transgenic D6 to impair cutaneous inflammatory responses, our data support a role for elevated D6 levels in suppressing inflammatory chemokine action and lesion development in uninvolved psoriatic skin. D6 expression consistently dropped in perilesional and lesional skin, coincident with development of psoriatic plaques. D6 expression in uninvolved skin also was reduced after trauma, indicative of a role for trauma-mediated reduction in D6 expression in triggering lesion development. Importantly, D6 is also elevated in peripheral blood leukocytes in psoriatic patients, indicating that upregulation may be a general protective response to inflammation. Together our data demonstrate a novel role for D6 as a regulator of the transition from uninvolved to lesional skin in psoriasis

    Improving average ranking precision in user searches for biomedical research datasets

    Full text link
    Availability of research datasets is keystone for health and life science study reproducibility and scientific progress. Due to the heterogeneity and complexity of these data, a main challenge to be overcome by research data management systems is to provide users with the best answers for their search queries. In the context of the 2016 bioCADDIE Dataset Retrieval Challenge, we investigate a novel ranking pipeline to improve the search of datasets used in biomedical experiments. Our system comprises a query expansion model based on word embeddings, a similarity measure algorithm that takes into consideration the relevance of the query terms, and a dataset categorisation method that boosts the rank of datasets matching query constraints. The system was evaluated using a corpus with 800k datasets and 21 annotated user queries. Our system provides competitive results when compared to the other challenge participants. In the official run, it achieved the highest infAP among the participants, being +22.3% higher than the median infAP of the participant's best submissions. Overall, it is ranked at top 2 if an aggregated metric using the best official measures per participant is considered. The query expansion method showed positive impact on the system's performance increasing our baseline up to +5.0% and +3.4% for the infAP and infNDCG metrics, respectively. Our similarity measure algorithm seems to be robust, in particular compared to Divergence From Randomness framework, having smaller performance variations under different training conditions. Finally, the result categorization did not have significant impact on the system's performance. We believe that our solution could be used to enhance biomedical dataset management systems. In particular, the use of data driven query expansion methods could be an alternative to the complexity of biomedical terminologies

    Improving basic and translational science by accounting for litter-to-litter variation in animal models

    Get PDF
    Background: Animals from the same litter are often more alike compared with animals from different litters. This litter-to-litter variation, or "litter effects", can influence the results in addition to the experimental factors of interest. Furthermore, an experimental treatment can be applied to whole litters rather than to individual offspring. For example, in the valproic acid (VPA) model of autism, VPA is administered to pregnant females thereby inducing the disease phenotype in the offspring. With this type of experiment the sample size is the number of litters and not the total number of offspring. If such experiments are not appropriately designed and analysed, the results can be severely biased as well as extremely underpowered. Results: A review of the VPA literature showed that only 9% (3/34) of studies correctly determined that the experimental unit (n) was the litter and therefore made valid statistical inferences. In addition, litter effects accounted for up to 61% (p <0.001) of the variation in behavioural outcomes, which was larger than the treatment effects. In addition, few studies reported using randomisation (12%) or blinding (18%), and none indicated that a sample size calculation or power analysis had been conducted. Conclusions: Litter effects are common, large, and ignoring them can make replication of findings difficult and can contribute to the low rate of translating preclinical in vivo studies into successful therapies. Only a minority of studies reported using rigorous experimental methods, which is consistent with much of the preclinical in vivo literature.Comment: http://www.biomedcentral.com/1471-2202/14/37/abstrac

    Quantifying the behavioural relevance of hippocampal neurogenesis

    Full text link
    Few studies that examine the neurogenesis--behaviour relationship formally establish covariation between neurogenesis and behaviour or rule out competing explanations. The behavioural relevance of neurogenesis might therefore be overestimated if other mechanisms account for some, or even all, of the experimental effects. A systematic review of the literature was conducted and the data reanalysed using causal mediation analysis, which can estimate the behavioural contribution of new hippocampal neurons separately from other mechanisms that might be operating. Results from eleven eligible individual studies were then combined in a meta-analysis to increase precision (representing data from 215 animals) and showed that neurogenesis made a negligible contribution to behaviour (standarised effect = 0.15; 95% CI = -0.04 to 0.34; p = 0.128); other mechanisms accounted for the majority of experimental effects (standardised effect = 1.06; 95% CI = 0.74 to 1.38; p = 1.7 ×10−11\times 10^{-11}).Comment: To be published in PLoS ON

    Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival

    Get PDF
    Cancer cachexia is a devastating metabolic syndrome characterized by systemic inflammation and massive muscle and adipose tissue wasting. Although it is responsible for approximately one-third of cancer deaths, no effective therapies are available and the underlying mechanisms have not been fully elucidated. We previously identified the bromodomain and extra-terminal domain (BET) protein BRD4 as an epigenetic regulator of muscle mass. Here we show that the pan-BET inhibitor (+)-JQ1 protects tumor-bearing mice from body weight loss and muscle and adipose tissue wasting. Remarkably, in C26-tumor-bearing mice (+)-JQ1 administration dramatically prolongs survival, without directly affecting tumor growth. By ChIP-seq and ChIP analyses, we unveil that BET proteins directly promote the muscle atrophy program during cachexia. In addition, BET proteins are required to coordinate an IL6-dependent AMPK nuclear signaling pathway converging on FoxO3 transcription factor. Overall, these findings indicate that BET proteins may represent a promising therapeutic target in the management of cancer cachexia
    • …
    corecore