459,323 research outputs found

    Effect of doping and oxygen vacancies on the octahedral tilt transitions in the BaCeO3 perovskite

    Full text link
    We present a systematic study of the effect of Y doping and hydration level on the structural transformations of BaCeO3 based on anelastic spectroscopy experiments. The temperature of the intermediate transformation between rhombohedral and orthorhombic Imma phases rises with increasing the molar fraction x of Y roughly as (500 K)x in the hydrated state, and is depressed of more than twice that amount after complete dehydration. This is explained in terms of the effect of doping on the average (Ce/Y)-O and Ba-O bond lengths, and of lattice relaxation from O vacancies. The different behavior of the transition to the lower temperature Pnma orthorhombic phase is tentatively explained in terms of progressive flattening of the effective shape of the OH ion and ordering of the O vacancies during cooling.Comment: 8 pages, 5 figure

    A numerical study of one-patch colloidal particles: from square-well to Janus

    Full text link
    We perform numerical simulations of a simple model of one-patch colloidal particles to investigate: (i) the behavior of the gas-liquid phase diagram on moving from a spherical attractive potential to a Janus potential and (ii) the collective structure of a system of Janus particles. We show that, for the case where one of the two hemispheres is attractive and one is repulsive, the system organizes into a dispersion of orientational ordered micelles and vesicles and, at low TT, the system can be approximated as a fluid of such clusters, interacting essentially via excluded volume. The stability of this cluster phase generates a very peculiar shape of the gas and liquid coexisting densities, with a gas coexistence density which increases on cooling, approaching the liquid coexistence density at very low TT.Comment: 9 pages, 10 figures, Phys. Chem. Chem. Phys. in press (2010

    Theoretical description of a DNA-linked nanoparticle self-assembly

    Full text link
    Nanoparticles tethered with DNA strands are promising building blocks for bottom-up nanotechnology, and a theoretical understanding is important for future development. Here we build on approaches developed in polymer physics to provide theoretical descriptions for the equilibrium clustering and dynamics, as well as the self-assembly kinetics of DNA-linked nanoparticles. Striking agreement is observed between the theory and molecular modeling of DNA tethered nanoparticles.Comment: Accepted for publication in Physical Review Letter

    Sharp Trace Hardy-Sobolev-Maz'ya Inequalities and the Fractional Laplacian

    Get PDF
    In this work we establish trace Hardy and trace Hardy-Sobolev-Maz'ya inequalities with best Hardy constants, for domains satisfying suitable geometric assumptions such as mean convexity or convexity. We then use them to produce fractional Hardy-Sobolev-Maz'ya inequalities with best Hardy constants for various fractional Laplacians. In the case where the domain is the half space our results cover the full range of the exponent s∈(0,1)s \in (0,1) of the fractional Laplacians. We answer in particular an open problem raised by Frank and Seiringer \cite{FS}.Comment: 42 page

    Beam Instabilities in the Scale Free Regime

    Full text link
    The instabilities arising in a one-dimensional beam sustained by the diffusive photorefractive nonlinearity in out-of-equilibrium ferroelectrics are theoretically and numerically investigated. In the "scale-free model", in striking contrast with the well-known spatial modulational instability, two different beam instabilities dominate: a defocusing and a fragmenting process. Both are independent of the beam power and are not associated to any specific periodic pattern.Comment: 4 pages, 3 figure

    Fits, and especially linear fits, with errors on both axes, extra variance of the data points and other complications

    Full text link
    The aim of this paper, triggered by some discussions in the astrophysics community raised by astro-ph/0508529, is to introduce the issue of `fits' from a probabilistic perspective (also known as Bayesian), with special attention to the construction of model that describes the `network of dependences' (a Bayesian network) that connects experimental observations to model parameters and upon which the probabilistic inference relies. The particular case of linear fit with errors on both axes and extra variance of the data points around the straight line (i.e. not accounted by the experimental errors) is shown in detail. Some questions related to the use of linear fit formulas to log-linearized exponential and power laws are also sketched, as well as the issue of systematic errors.Comment: 20 pages, 4 figures, hyperlinked bibliography in pdf versio

    Properties of entangled photon pairs generated in one-dimensional nonlinear photonic-band-gap structures

    Full text link
    We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49 layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency.Comment: 14 pages, 23 figure

    Analogue neural networks on correlated random graphs

    Full text link
    We consider a generalization of the Hopfield model, where the entries of patterns are Gaussian and diluted. We focus on the high-storage regime and we investigate analytically the topological properties of the emergent network, as well as the thermodynamic properties of the model. We find that, by properly tuning the dilution in the pattern entries, the network can recover different topological regimes characterized by peculiar scalings of the average coordination number with respect to the system size. The structure is also shown to exhibit a large degree of cliquishness, even when very sparse. Moreover, we obtain explicitly the replica symmetric free energy and the self-consistency equations for the overlaps (order parameters of the theory), which turn out to be classical weighted sums of 'sub-overlaps' defined on all possible sub-graphs. Finally, a study of criticality is performed through a small-overlap expansion of the self-consistencies and through a whole fluctuation theory developed for their rescaled correlations: Both approaches show that the net effect of dilution in pattern entries is to rescale the critical noise level at which ergodicity breaks down.Comment: 34 pages, 3 figure

    Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    Full text link
    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90°\degree with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with EkinProd>E^{\rm Prod}_{\rm kin} > 83 MeV and emitted at 90°\degree with respect to the beam line is: dNP/(dNCdΩ)(EkinProd>83 MeV,θ=90°)=(2.69±0.08stat±0.12sys)×10−4sr−1dN_{\rm P}/(dN_{\rm C}d\Omega)(E^{\rm Prod}_{\rm kin} > 83 {\rm ~MeV}, \theta=90\degree)= (2.69\pm 0.08_{\rm stat} \pm 0.12_{\rm sys})\times 10^{-4} sr^{-1}.Comment: 13 pages, 9 figure

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore