108,135 research outputs found

    Advantages of gated silicon single photon detectors

    Full text link
    We present a gated silicon single photon detector based on a commercially available avalanche photodiode. Our detector achieves a photon detection efficiency of 45\pm5% at 808 nm with 2x 10^-6 dark count per ns at -30V of excess bias and -30{\deg}C. We compare gated and free-running detectors and show that this mode of operation has significant advantages in two representative experimental scenarios: detecting a single photon either hidden in faint continuous light or after a strong pulse. We also explore, at different temperatures and incident light intensities, the "charge persistence" effect, whereby a detector clicks some time after having been illuminated

    Divergence of the correlation length for critical planar FK percolation with 1q41\le q\le4 via parafermionic observables

    Full text link
    Parafermionic observables were introduced by Smirnov for planar FK percolation in order to study the critical phase (p,q)=(pc(q),q)(p,q)=(p_c(q),q). This article gathers several known properties of these observables. Some of these properties are used to prove the divergence of the correlation length when approaching the critical point for FK percolation when 1q41\le q\le 4. A crucial step is to consider FK percolation on the universal cover of the punctured plane. We also mention several conjectures on FK percolation with arbitrary cluster-weight q>0q>0.Comment: 26 page

    Looking for symmetric Bell inequalities

    Full text link
    Finding all Bell inequalities for a given number of parties, measurement settings, and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.Comment: Joined the associated website as an ancillary file, 17 pages, 1 figure, 1 tabl

    Dynamics and universality in noise driven dissipative systems

    Full text link
    We investigate the dynamical properties of low dimensional systems, driven by external noise sources. Specifically we consider a resistively shunted Josephson junction and a one dimensional quantum liquid in a commensurate lattice potential, subject to 1/f1/f noise. In absence of nonlinear coupling, we have shown previously that these systems establish a non-equilibrium critical steady state [Nature Phys. 6, 806 (2010)]. Here we use this state as the basis for a controlled renormalization group analysis using the Keldysh path integral formulation to treat the non linearities: the Josephson coupling and the commensurate lattice. The analysis to first order in the coupling constant indicates transitions between superconducting and localized regimes that are smoothly connected to the respective equilibrium transitions. However at second order, the back action of the mode coupling on the critical state leads to renormalization of dissipation and emergence of an effective temperature. In the Josephson junction the temperature is parametrically small allowing to observe a universal crossover between the superconducting and insulating regimes. The IV characteristics of the junction displays algebraic behavior controlled by the underlying critical state over a wide range. In the noisy one dimensional liquid the generated dissipation and effective temperature are not small as in the junction. We find a crossover between a quasi-localized regime dominated by dissipation and another dominated by temperature. However since in the thermal regime the thermalization rate is parametrically small, signatures of the non-equilibrium critical state can be seen in transient dynamics.Comment: 30 pages, 8 figures. Revised versio

    Quantum storage of polarization qubits in birefringent and anisotropically absorbing materials

    Full text link
    Storage of quantum information encoded into true single photons is an essential constituent of long-distance quantum communication based on quantum repeaters and of optical quantum information processing. The storage of photonic polarization qubits is, however, complicated by the fact that many materials are birefringent and have polarization-dependent absorption. Here we present and demonstrate a simple scheme that allows compensating for these polarization effects. The scheme is demonstrated using a solid-state quantum memory implemented with an ensemble of rare-earth ions doped into a biaxial yttrium orthosilicate (Y2SiO5Y_2SiO_5) crystal. Heralded single photons generated from a filtered spontaneous parametric downconversion source are stored, and quantum state tomography of the retrieved polarization state reveals an average fidelity of 97.5±0.497.5 \pm 0.4%, which is significantly higher than what is achievable with a measure-and-prepare strategy.Comment: 7 pages, 3 figures, 1 table, corrected typos and added ref. 3

    Entanglement and non-locality are different resources

    Full text link
    Bell's theorem states that, to simulate the correlations created by measurement on pure entangled quantum states, shared randomness is not enough: some "non-local" resources are required. It has been demonstrated recently that all projective measurements on the maximally entangled state of two qubits can be simulated with a single use of a "non-local machine". We prove that a strictly larger amount of this non-local resource is required for the simulation of pure non-maximally entangled states of two qubits ψ(α)=cosα00+sinα11\ket{\psi(\alpha)}= \cos\alpha\ket{00}+\sin\alpha\ket{11} with 0<απ7.80<\alpha\lesssim\frac{\pi}{7.8}.Comment: 8 pages, 3 figure

    Investigations of Optical Coherence Properties in an Erbium-doped Silicate Fiber for Quantum State Storage

    Full text link
    We studied optical coherence properties of the 1.53 μ\mum telecommunication transition in an Er3+^{3+}-doped silicate optical fiber through spectral holeburning and photon echoes. We find decoherence times of up to 3.8 μ\mus at a magnetic field of 2.2 Tesla and a temperature of 150 mK. A strong magnetic-field dependent optical dephasing was observed and is believed to arise from an interaction between the electronic Er3+^{3+} spin and the magnetic moment of tunneling modes in the glass. Furthermore, we observed fine-structure in the Erbium holeburning spectrum originating from superhyperfine interaction with 27^{27}Al host nuclei. Our results show that Er3+^{3+}-doped silicate fibers are promising material candidates for quantum state storage

    Off-critical lattice models and massive SLEs

    Get PDF
    We suggest how versions of Schramm’s SLE can be used to describe the scaling limit of some off-critical 2D lattice models. Many open questions remain

    Quantum Repeaters with Photon Pair Sources and Multi-Mode Memories

    Get PDF
    We propose a quantum repeater protocol which builds on the well-known DLCZ protocol [L.M. Duan, M.D. Lukin, J.I. Cirac, and P. Zoller, Nature 414, 413 (2001)], but which uses photon pair sources in combination with memories that allow to store a large number of temporal modes. We suggest to realize such multi-mode memories based on the principle of photon echo, using solids doped with rare-earth ions. The use of multi-mode memories promises a speedup in entanglement generation by several orders of magnitude and a significant reduction in stability requirements compared to the DLCZ protocol.Comment: 4 pages, 2 figures, to appear in PRL, accepted versio

    Skewness as a probe of non-Gaussian initial conditions

    Get PDF
    We compute the skewness of the matter distribution arising from non-linear evolution and from non-Gaussian initial perturbations. We apply our result to a very generic class of models with non-Gaussian initial conditions and we estimate analytically the ratio between the skewness due to non-linear clustering and the part due to the intrinsic non-Gaussianity of the models. We finally extend our estimates to higher moments.Comment: 5 pages, 2 ps-figs., accepted for publication in PRD, rapid com
    corecore