235,740 research outputs found

    Is there an interplay between adherence to mediterranean diet, antioxidant status, and vascular disease in atrial fibrillation patients?

    Get PDF
    Mediterranean Diet (Med-Diet) is associated with reduced incidence of vascular events (VEs) in atrial fibrillation (AF), but the mechanism accounting for its beneficial effect is only partially known. We hypothesized that Med-Diet may reduce VEs by improving antioxidant status, as assessed by glutathione peroxidase 3 (GPx3) and superoxide dismutase (SOD). We performed a prospective cohort study investigating the relationship between adherence to Med-Diet, serum baseline GPx3 and SOD activities, and the occurrence of VEs in 690 AF patients. GPx3 activity was directly associated with Med-Diet score (B = 0.192, p < 0.001) and inversely with age (B = −0.124, p = 0.001), after adjustment for potential confounders; Med-Diet weakly affected SOD levels. During a mean follow-up of 46.1 ± 28.2 months, 89 VEs were recorded; patients with VEs had lower GPx3 levels compared with those without VEs (p = 0.002); and no differences regarding SOD activity were found. Multivariable Cox regression analysis showed that age (Hazard ratio [HR]:1.065, p < 0.001), logGPx3 (above median, HR: 0.629, p < 0.05), and Med-Diet score (HR: 0.547, p < 0.05) predicted VEs. Med-Diet favorably modulates antioxidant activity of GPx3 in AF, resulting in reduced VEs rate. We hypothesize that the modulation of GPx3 levels by Med-Diet could represent an additional nutritional strategy to prevent VEs in AF patients

    Exercise redox biochemistry:conceptual, methodological and technical recommendations

    Get PDF
    Exercise redox biochemistry is of considerable interest owing to its translational value in health and disease. However, unaddressed conceptual, methodological and technical issues complicate attempts to unravel how exercise alters redox homeostasis in health and disease. Conceptual issues relate to misunderstandings that arise when the chemical heterogeneity of redox biology is disregarded which often complicate attempts to use redox-active compounds and assess redox signalling. Further, that oxidised macromolecule adduct levels reflect formation and repair is seldom considered. Methodological and technical issues relate to the use of out-dated assays and/or inappropriate sample preparation techniques that confound biochemical redox analysis. After considering each of the aforementioned issues, we outline how each issue can be resolved and provide a unifying set of recommendations. We specifically recommend that investigators: consider chemical heterogeneity, use redox-active compounds judiciously, abandon flawed assays, carefully prepare samples and assay buffers, consider repair/metabolism, use multiple biomarkers to assess oxidative damage and redox signalling

    Redox homeostasis: The Golden Mean of healthy living

    Get PDF
    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of main- tenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the mis- perception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically ad- dressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutri- tional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of en- dogenously produced electrophiles (parahormesis). In summary, while hormesis, although globally protective, results in setting up of a new phenotype, parahormesis contributes to health by favoring maintenance of homeostasis

    Redox-dependent and redox-independent functions of Caenorhabditis elegans thioredoxin 1

    Get PDF
    Thioredoxins (TRX) are traditionally considered as enzymes catalyzing redox reactions. However, redox-independent functions of thioredoxins have been described in different organisms, although the underlying molecular mechanisms are yet unknown. We report here the characterization of the first generated endogenous redox-inactive thioredoxin in an animal model, the TRX-1 in the nematode Caenorhabditis elegans. We find that TRX-1 dually regulates the formation of an endurance larval stage (dauer) by interacting with the insulin pathway in a redox-independent manner and the cGMP pathway in a redox-dependent manner. Moreover, the requirement of TRX-1 for the extended longevity of worms with compromised insulin signalling or under calorie restriction relies on TRX-1 redox activity. In contrast, the nuclear translocation of the SKN-1 transcription factor and increased LIPS-6 protein levels in the intestine upon trx-1 deficiency are strictly redox-independent. Finally, we identify a novel function of C. elegans TRX-1 in male food-leaving behaviour that is redox-dependent. Taken together, our results position C. elegans as an ideal model to gain mechanistic insight into the redox-independent functions of metazoan thioredoxins, overcoming the limitations imposed by the embryonic lethal phenotypes of thioredoxin mutants in higher organisms.NIH Office of Research Infrastructure P40 OD010440Spanish Ministry of Economy and Competitiveness BFU2015- 64408-PFondo Social Europeo BFU2015- 64408-PNational Institute of Allergy and Infectious Diseases of the National Institutes of Health R01AI07640

    The thermodynamic landscape of carbon redox biochemistry

    Full text link
    Redox biochemistry plays a key role in the transduction of chemical energy in all living systems. Observed redox reactions in metabolic networks represent only a minuscule fraction of the space of all possible redox reactions. Here we ask what distinguishes observed, natural redox biochemistry from the space of all possible redox reactions between natural and non-natural compounds. We generate the set of all possible biochemical redox reactions involving linear chain molecules with a fixed numbers of carbon atoms. Using cheminformatics and quantum chemistry tools we analyze the physicochemical and thermodynamic properties of natural and non-natural compounds and reactions. We find that among all compounds, aldose sugars are the ones with the highest possible number of connections (reductions and oxidations) to other molecules. Natural metabolites are significantly enriched in carboxylic acid functional groups and depleted in carbonyls, and have significantly higher solubilities than non-natural compounds. Upon constructing a thermodynamic landscape for the full set of reactions as a function of pH and of steady-state redox cofactor potential, we find that, over this whole range of conditions, natural metabolites have significantly lower energies than the non-natural compounds. For the set of 4-carbon compounds, we generate a Pourbaix phase diagram to determine which metabolites are local energetic minima in the landscape as a function of pH and redox potential. Our results suggest that, across a set of conditions, succinate and butyrate are local minima and would thus tend to accumulate at equilibrium. Our work suggests that metabolic compounds could have been selected for thermodynamic stability, and yields insight into thermodynamic and design principles governing nature’s metabolic redox reactions.https://www.biorxiv.org/content/10.1101/245811v1Othe

    High Reversibility of Lattice Oxygen Redox in Na-ion and Li-ion Batteries Quantified by Direct Bulk Probes of both Anionic and Cationic Redox Reactions

    Get PDF
    The reversibility and cyclability of anionic redox in battery electrodes hold the key to its practical employments. Here, through mapping of resonant inelastic X-ray scattering (mRIXS), we have independently quantified the evolving redox states of both cations and anions in Na2/3Mg1/3Mn2/3O2. The bulk-Mn redox emerges from initial discharge and is quantified by inverse-partial fluorescence yield (iPFY) from Mn-L mRIXS. Bulk and surface Mn activities likely lead to the voltage fade. O-K super-partial fluorescence yield (sPFY) analysis of mRIXS shows 79% lattice oxygen-redox reversibility during initial cycle, with 87% capacity sustained after 100 cycles. In Li1.17Ni0.21Co0.08Mn0.54O2, lattice-oxygen redox is 76% initial-cycle reversible but with only 44% capacity retention after 500 cycles. These results unambiguously show the high reversibility of lattice-oxygen redox in both Li-ion and Na-ion systems. The contrast between Na2/3Mg1/3Mn2/3O2 and Li1.17Ni0.21Co0.08Mn0.54O2 systems suggests the importance of distinguishing lattice-oxygen redox from other oxygen activities for clarifying its intrinsic properties.Comment: 33 pages, 8 Figures. Plus 14 pages of Supplementary Materials with 12 Figure

    The basic chemistry of exercise-induced DNA oxidation:oxidative damage, redox signalling and their interplay

    Get PDF
    Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signalling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signalling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signalling and DNA damage, using hydroxyl radical (·OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signalling and damage. Indeed, H2O2 can participate in two electron signalling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signalling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signalling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation
    corecore