11 research outputs found

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app.United States Department of Energy (DOE) DE-AC02-05CH11231government of Japan (Ministry of Education, Culture, Sports, Science and Technology)Istituto Nazionale di Fisica Nucleare (INFN)Physical Society of Japan (JPS)European Laboratory for Particle Physics (CERN)United States Department of Energy (DOE

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings

    Performance Study of a Class of Irregular Near Capacity Achieving LDPC Codes

    Get PDF
    This paper investigates the performance of a class of irregular low-density parity-check (LDPC) codes through a recently published low complexity upper bound on their beliefpropagation decoding thresholds. Moreover, their performance analysis is carried out through a recently published algorithmic method, presented in Babich et al. 2017 paper. In particular, the class considered is characterized by variable node degree distributions λ(x) of minimum degree i1 > 2: being, in this case, λ0(0) = λ2 = 0, this is useful to design LDPC codes presenting a linear minimum distance growth with the block length with probability 1, as shown in Di et al.'s 2006 paper. These codes unfortunately cannot reach capacity under iterative decoding, since the achievement of capacity requires λ2 ≠ 0. However, in this latter case, the block error probability might converge to a constant, as shown in the aforementioned paper

    When Machine Learning Meets Information Theory: Some Practical Applications to Data Storage

    Get PDF
    Machine learning and information theory are closely inter-related areas. In this dissertation, we explore topics in their intersection with some practical applications to data storage. Firstly, we explore how machine learning techniques can be used to improve data reliability in non-volatile memories (NVMs). NVMs, such as flash memories, store large volumes of data. However, as devices scale down towards small feature sizes, they suffer from various kinds of noise and disturbances, thus significantly reducing their reliability. This dissertation explores machine learning techniques to design decoders that make use of natural redundancy (NR) in data for error correction. By NR, we mean redundancy inherent in data, which is not added artificially for error correction. This work studies two different schemes for NR-based error-correcting decoders. In the first scheme, the NR-based decoding algorithm is aware of the data representation scheme (e.g., compression, mapping of symbols to bits, meta-data, etc.), and uses that information for error correction. In the second scenario, the NR-decoder is oblivious of the representation scheme and uses deep neural networks (DNNs) to recognize the file type as well as perform soft decoding on it based on NR. In both cases, these NR-based decoders can be combined with traditional error correction codes (ECCs) to substantially improve their performance. Secondly, we use concepts from ECCs for designing robust DNNs in hardware. Non-volatile memory devices like memristors and phase-change memories are used to store the weights of hardware implemented DNNs. Errors and faults in these devices (e.g., random noise, stuck-at faults, cell-level drifting etc.) might degrade the performance of such DNNs in hardware. We use concepts from analog error-correcting codes to protect the weights of noisy neural networks and to design robust neural networks in hardware. To summarize, this dissertation explores two important directions in the intersection of information theory and machine learning. We explore how machine learning techniques can be useful in improving the performance of ECCs. Conversely, we show how information-theoretic concepts can be used to design robust neural networks in hardware

    REVIEW OF PARTICLE PHYSICS

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app.Peer reviewe

    Quantum information processing with photonic graph states

    Get PDF
    Quantum information processing is the field of science where the underlying principles of quantum mechanics are explored and exploited to achieve a given goal. In quantum information theory, the so-called graph states can be used as a resource to encode, manipulate and read-out quantum information. In the present thesis, graph states are experimentally realised up to six qubits by means of single photons at telecom wavelength. High-quality graph states and high generation rates are achieved. These photonic graph states are then employed in three independent experiments covering the topics of quantum foundations, quantum key distribution, and quantum metrology respectively. The first experiment shows for the first time the incompatibility of quantum mechanics with the notion of “observer independence”. The second experiment, demonstrates the use of graph states to distribute a secret and common key among several users. A so-called conference key agreement protocol is demonstrated between four users achieving unprecedented rates at which graph state are distributed over long distances. Finally, the third experiment is proposed to demonstrate the feasibility of phase estimation in realistic noisy environments. Graph states’ robustness against noise is enhanced with a novel technique based on experimentally-friendly local encoding. In conclusion, the present thesis provides a comprehensive experimental investigation on the generation and use of graph states for advanced quantum information processing

    Review of particle physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore