36,491 research outputs found

    Reading aloud boosts connectivity through the putamen

    Get PDF
    Functional neuroimaging and lesion studies have frequently reported thalamic and putamen activation during reading and speech production. However, it is currently unknown how activity in these structures interacts with that in other reading and speech production areas. This study investigates how reading aloud modulates the neuronal interactions between visual recognition and articulatory areas, when both the putamen and thalamus are explicitly included. Using dynamic causal modeling in skilled readers who were reading regularly spelled English words, we compared 27 possible pathways that might connect the ventral anterior occipito-temporal sulcus (aOT) to articulatory areas in the precentral cortex (PrC). We focused on whether the neuronal interactions within these pathways were increased by reading relative to picture naming and other visual and articulatory control conditions. The results provide strong evidence that reading boosts the aOT–PrC pathway via the putamen but not the thalamus. However, the putamen pathway was not exclusive because there was also evidence for another reading pathway that did not involve either the putamen or the thalamus. We conclude that the putamen plays a special role in reading but this is likely to vary with individual reading preferences and strategies

    Brain putamen volume changes in newly-diagnosed patients with obstructive sleep apnea.

    Get PDF
    Obstructive sleep apnea (OSA) is accompanied by cognitive, motor, autonomic, learning, and affective abnormalities. The putamen serves several of these functions, especially motor and autonomic behaviors, but whether global and specific sub-regions of that structure are damaged is unclear. We assessed global and regional putamen volumes in 43 recently-diagnosed, treatment-naïve OSA (age, 46.4 ± 8.8 years; 31 male) and 61 control subjects (47.6 ± 8.8 years; 39 male) using high-resolution T1-weighted images collected with a 3.0-Tesla MRI scanner. Global putamen volumes were calculated, and group differences evaluated with independent samples t-tests, as well as with analysis of covariance (covariates; age, gender, and total intracranial volume). Regional differences between groups were visualized with 3D surface morphometry-based group ratio maps. OSA subjects showed significantly higher global putamen volumes, relative to controls. Regional analyses showed putamen areas with increased and decreased tissue volumes in OSA relative to control subjects, including increases in caudal, mid-dorsal, mid-ventral portions, and ventral regions, while areas with decreased volumes appeared in rostral, mid-dorsal, medial-caudal, and mid-ventral sites. Global putamen volumes were significantly higher in the OSA subjects, but local sites showed both higher and lower volumes. The appearance of localized volume alterations points to differential hypoxic or perfusion action on glia and other tissues within the structure, and may reflect a stage in progression of injury in these newly-diagnosed patients toward the overall volume loss found in patients with chronic OSA. The regional changes may underlie some of the specific deficits in motor, autonomic, and neuropsychologic functions in OSA

    Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson's disease

    Get PDF
    Muscarinic and nicotinic cholinergic receptors and choline acetyltransferase activity were studied in postmortem brain tissue from patients with histopathologically confirmed Parkinson's disease and matched control subjects. Using washed membrane homogenates from the frontal cortex, hippocampus, caudate nucleus, and putamen, saturation analysis of specific receptor binding was performed for the total number of muscarinic receptors with [3H]quinuclidinyl benzilate, for muscarinic M1 receptors with [3H]pirenzepine, for muscarinic M2 receptors with [3H]oxotremorine-M, and for nicotinic receptors with (-)-[3H]nicotine. In comparison with control tissues, choline acetyl-transferase activity was reduced in the frontal cortex and hippocampus and unchanged in the caudate nucleus and putamen of parkinsonian patients. In Parkinson's disease the maximal binding site density for [3H]quinuclidinyl benzilate was increased in the frontal cortex and unaltered in the hippocampus, caudate nucleus, and putamen. Specific [3H]pirenzepine binding was increased in the frontal cortex, unaltered in the hippocampus, and decreased in the caudate nucleus and putamen. In parkinsonian patients Bmax values for specific [3H]oxotremorine-M binding were reduced in the cortex and unchanged in the hippocampus and striatum compared with controls. Maximal (-)-[3H]nicotine binding was reduced in both the cortex and hippocampus and unaltered in both the caudate nucleus and putamen. Alterations of the equilibrium dissociation constant were not observed for any ligand in any of the brain areas examined. The present results suggest that both the innominatocortical and the septohippocampal cholinergic systems degenerate in Parkinson's disease.(ABSTRACT TRUNCATED AT 250 WORDS

    Independent circuits in basal ganglia and cortex for the processing of reward and precision feedback

    Full text link
    In order to understand human decision making it is necessary to understand how the brain uses feedback to guide goal-directed behavior. The ventral striatum (VS) appears to be a key structure in this function, responding strongly to explicit reward feedback. However, recent results have also shown striatal activity following correct task performance even in the absence of feedback. This raises the possibility that, in addition to processing external feedback, the dopamine-centered reward circuit might regulate endogenous reinforcement signals, like those triggered by satisfaction in accurate task performance. Here we use functional magnetic resonance imaging (fMRI) to test this idea. Participants completed a simple task that garnered both reward feedback and feedback about the precision of performance. Importantly, the design was such that we could manipulate information about the precision of performance within different levels of reward magnitude. Using parametric modulation and functional connectivity analysis we identified brain regions sensitive to each of these signals. Our results show a double dissociation: frontal and posterior cingulate regions responded to explicit reward but were insensitive to task precision, whereas the dorsal striatum - and putamen in particular - was insensitive to reward but responded strongly to precision feedback in reward-present trials. Both types of feedback activated the VS, and sensitivity in this structure to precision feedback was predicted by personality traits related to approach behavior and reward responsiveness. Our findings shed new light on the role of specific brain regions in integrating different sources of feedback to guide goal-directed behavior

    A Multivariate Surface-Based Analysis of the Putamen in Premature Newborns: Regional Differences within the Ventral Striatum

    Get PDF
    Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface deformation in these structures. For the first time, here we found regional surface morphological differences in the preterm neonatal ventral striatum. We performed regional group comparisons of the surface anatomy of the striatum (putamen and globus pallidus) between 17 preterm and 19 term-born neonates at term-equivalent age. We reconstructed striatal surfaces from manually segmented brain magnetic resonance images and analyzed them using our in-house conformal mapping program. All surfaces were registered to a template with a new surface fluid registration method. Vertex-based statistical comparisons between the two groups were performed via four methods: univariate and multivariate tensor-based morphometry, the commonly used medial axis distance, and a combination of the last two statistics. We found statistically significant differences in regional morphology between the two groups that are consistent across statistics, but more extensive for multivariate measures. Differences were localized to the ventral aspect of the striatum. In particular, we found abnormalities in the preterm anterior/inferior putamen, which is interconnected with the medial orbital/prefrontal cortex and the midline thalamic nuclei including the medial dorsal nucleus and pulvinar. These findings support the hypothesis that the ventral striatum is vulnerable, within the cortico-stiato-thalamo-cortical neural circuitry, which may underlie the risk for long-term development of frontal executive dysfunction, attention deficit hyperactivity disorder and attention-related learning disabilities in preterm neonates. © 2013 Shi et al

    Mindfulness meditation modulates reward prediction errors in a passive conditioning task

    Get PDF
    Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of reward and cues that predict reward. Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error (PE) signals. We found diminished positive and negative PE-related blood-oxygen level-dependent (BOLD) responses in the putamen in meditators compared with controls. In the meditator group this decrease in striatal BOLD responses to reward PE was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1) were elevated in both meditators and controls. Overall, these results provide evidence that experienced mindfulness meditators are able to attenuate reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula

    How to run a brain bank. A report from the Austro-German brain bank

    Get PDF
    The sophisticated analysis of and growing information on the human brain requires that acquisition, dissection, storage and distribution of rare material are managed in a professional way. In this publication we present the concept and practice of our brain bank. Both brain tissue and information are handled by standardized procedures and flow in parallel from pathology to neuropathology and neurochemistry. Data concerning brain material are updated with clinical information gained by standardized procedures

    Diagnostic performance of the specific uptake size index for semi-quantitative analysis of I-123-FP-CIT SPECT: harmonized multi-center research setting versus typical clinical single-camera setting

    Get PDF
    Introduction: The specific uptake size index (SUSI) of striatal FP-CIT uptake is independent of spatial resolution in the SPECT image, in contrast to the specific binding ratio (SBR). This suggests that the SUSI is particularly appropriate for multi-site/multi-camera settings in which camera-specific effects increase inter-subject variability of spatial resolution. However, the SUSI is sensitive to inter-subject variability of striatum size. Furthermore, it might be more sensitive to errors of the estimate of non-displaceable FP-CIT binding. This study compared SUSI and SBR in the multi-site/multi-camera (MULTI) setting of a prospective multi-center study and in a mono-site/mono-camera (MONO) setting representative of clinical routine. Methods: The MULTI setting included patients with Parkinson’s disease (PD, n = 438) and healthy controls (n = 207) from the Parkinson Progression Marker Initiative. The MONO setting included 122 patients from routine clinical patient care in whom FP-CIT SPECT had been performed with the same double-head SPECT system according to the same acquisition and reconstruction protocol. Patients were categorized as “neurodegenerative” (n = 84) or “non-neurodegenerative” (n = 38) based on follow-up data. FP-CIT SPECTs were stereotactically normalized to MNI space. SUSI and SBR were computed for caudate, putamen, and whole striatum using unilateral ROIs predefined in MNI space. SUSI analysis was repeated in native patient space in the MONO setting. The area (AUC) under the ROC curve for identification of PD/“neurodegenerative” cases was used as performance measure. Results: In both settings, the highest AUC was achieved by the putamen (minimum over both hemispheres), independent of the semi-quantitative method (SUSI or SBR). The putaminal SUSI provided slightly better performance with ROI analysis in MNI space compared to patient space (AUC = 0.969 vs. 0.961, p = 0.129). The SUSI (computed in MNI space) performed slightly better than the SBR in the MULTI setting (AUC = 0.993 vs. 0.991, p = 0. 207) and slightly worse in the MONO setting (AUC = 0.969 vs. AUC = 0.976, p = 0.259). There was a trend toward larger AUC difference between SUSI and SBR in the MULTI setting compared to the MONO setting (p = 0.073). Variability of voxel intensity in the reference region was larger in misclassified cases compared to correctly classified cases for both SUSI and SBR (MULTI setting: p = 0.007 and p = 0.012, respectively). Conclusions: The SUSI is particularly useful in MULTI settings. SPECT images should be stereotactically normalized prior to SUSI analysis. The putaminal SUSI provides better diagnostic performance than the SUSI of the whole striatum. Errors of the estimate of non-displaceable count density in the reference region can cause misclassification by both SUSI and SBR, particularly in borderline cases. These cases might be identified by visual checking FP-CIT uptake in the reference region for particularly high variability

    Volumetric segmentation of multiple basal ganglia structures

    Get PDF
    We present a new active contour-based, statistical method for simultaneous volumetric segmentation of multiple subcortical structures in the brain. Neighboring anatomical structures in the human brain exhibit co-dependencies which can aid in segmentation, if properly analyzed and modeled. Motivated by this observation, we formulate the segmentation problem as a maximum a posteriori estimation problem, in which we incorporate statistical prior models on the shapes and inter-shape (relative) poses of the structures of interest. This provides a principled mechanism to bring high level information about the shapes and the relationships of anatomical structures into the segmentation problem. For learning the prior densities based on training data, we use a nonparametric multivariate kernel density estimation framework. We combine these priors with data in a variational framework, and develop an active contour-based iterative segmentation algorithm. We test our method on the problem of volumetric segmentation of basal ganglia structures in magnetic resonance (MR) images. We compare our technique with existing methods and demonstrate the improvements it provides in terms of segmentation accuracy
    corecore