138,048 research outputs found

    ProteoClade: A taxonomic toolkit for multi-species and metaproteomic analysis

    Get PDF
    We present ProteoClade, a Python toolkit that performs taxa-specific peptide assignment, protein inference, and quantitation for multi-species proteomics experiments. ProteoClade scales to hundreds of millions of protein sequences, requires minimal computational resources, and is open source, multi-platform, and accessible to non-programmers. We demonstrate its utility for processing quantitative proteomic data derived from patient-derived xenografts and its speed and scalability enable a novel de novo proteomic workflow for complex microbiota samples

    Dynamics of Mycobacterium tuberculosis Ag85B Revealed by a Sensitive Enzyme-Linked Immunosorbent Assay.

    Get PDF
    Secretion of specific proteins contributes to pathogenesis and immune responses in tuberculosis and other bacterial infections, yet the kinetics of protein secretion and fate of secreted proteins in vivo are poorly understood. We generated new monoclonal antibodies that recognize the Mycobacterium tuberculosis secreted protein Ag85B and used them to establish and characterize a sensitive enzyme-linked immunosorbent assay (ELISA) to quantitate Ag85B in samples generated in vitro and in vivo We found that nutritional or culture conditions had little impact on the secretion of Ag85B and that there is considerable variation in Ag85B secretion by distinct strains in the M. tuberculosis complex: compared with the commonly used H37Rv strain (lineage 4), Mycobacterium africanum (lineage 6) secretes less Ag85B, and two strains from lineage 2 secrete more Ag85B. We also used the ELISA to determine that the rate of secretion of Ag85B is 10- to 100-fold lower than that of proteins secreted by Gram-negative and Gram-positive bacteria, respectively. ELISA quantitation of Ag85B in lung homogenates of M. tuberculosis H37Rv-infected mice revealed that although Ag85B accumulates in the lungs as the bacterial population expands, the amount of Ag85B per bacterium decreases nearly 10,000-fold at later stages of infection, coincident with the development of T cell responses and arrest of bacterial population growth. These results indicate that bacterial protein secretion in vivo is dynamic and regulated, and quantitation of secreted bacterial proteins can contribute to the understanding of pathogenesis and immunity in tuberculosis and other infections.IMPORTANCE Bacterial protein secretion contributes to host-pathogen interactions, yet the process and consequences of bacterial protein secretion during infection are poorly understood. We developed a sensitive ELISA to quantitate a protein (termed Ag85B) secreted by M. tuberculosis and used it to find that Ag85B secretion occurs with slower kinetics than for proteins secreted by Gram-positive and Gram-negative bacteria and that accumulation of Ag85B in the lungs is markedly regulated as a function of the bacterial population density. Our results demonstrate that quantitation of bacterial proteins during infection can reveal novel insights into host-pathogen interactions

    Development of novel protein digestion and quantitation methods for mass spectrometic analysis

    Get PDF
    Proteins are the workhorses of biology, playing multifaceted roles in maintaining cellular function, signaling, and response to environmental cues. Understanding their abundance and dynamics is pivotal for unraveling the complexities of biological processes, which underpins the foundations of molecular and cellular biology. Accurate measurement of protein quantities provides insights into cellular homeostasis, facilitates the discovery of biomarkers, and sheds light on the molecular mechanisms of diseases, bridging the gap between the molecular intricacies of proteins and their functional consequences in health and disease. The evolution of protein quantitation methodologies, from classical colorimetric assays to sophisticated mass spectrometry-based approaches, has expanded the analytical precision and dynamic range, enabling the detection of proteins at low abundance levels. The development of targeted proteomic techniques has further refined the quantitation process, allowing researchers to investigate specific proteins or post-translational modifications with high sensitivity and accuracy. However, bottom-up targeted proteomic analysis and quantitation often requires overnight tryptic digestion to ensure complete protein cleavage into peptides, which may significantly hamper experimental efficiency and induce some chemical modifications during the long digestion process. In addition, isotope-labeled internal standards are needed for the absolute quantitation of the target proteins. Syntheses of those standards are time-consuming and costly, and some of standards might not be available or difficult to synthesize if the surrogate peptides contain post-translational modifications (PTMs). Therefore, developing new technologies to speed up the sample preparation process like digestion and standard-free quantitation strategies is essential and holds the promise of unlocking deeper insights into biology, driving innovation in diagnostics, and advancing the development of targeted therapies. Accordingly, the goal of this work is to develop novel methods for the ultrafast tryptic digestion of proteins and standard-free quantitation for peptides and proteins absolute quantitation without building the calibration curve. Three projects are included here with two novel technologies, i.e., ultrafast microdroplet digestion and coulometric mass spectrometry, showing the different applications. Firstly, the investigation of tryptic protein digestion in microdroplets and in bulk solution is conducted to comprehensively evaluate the microdroplet digestion versus bulk overnight digestion by examining digestion efficiency. Secondly, standard-free coulometric mass spectrometry (CMS) is applied for the absolute quantitation of tryptophan-containing peptides and amyloid beta-peptide fragments. Thirdly, coulometric mass spectrometry is further extended for the absolute quantitation of protein mixture sample, host cell proteins as well as deamidation modification. The successful application of those emerging technologies shows the potential for fast and cost-efficient quantitation of peptides and proteins in clinical and pharmaceutical settings

    Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation.

    Get PDF
    Exposure to high levels of ionizing radiation (IR) leads to debilitating and dose-limiting gastrointestinal (GI) toxicity. Using three-dimensional mouse crypt culture, we demonstrated that p53 target PUMA mediates radiation-induced apoptosis via a cell-intrinsic mechanism, and identified the GSK-3 inhibitor CHIR99021 as a potent radioprotector. CHIR99021 treatment improved Lgr5+ cell survival and crypt regeneration after radiation in culture and mice. CHIR99021 treatment specifically blocked apoptosis and PUMA induction and K120 acetylation of p53 mediated by acetyl-transferase Tip60, while it had no effect on p53 stabilization, phosphorylation or p21 induction. CHIR99021 also protected human intestinal cultures from radiation by PUMA but not p21 suppression. These results demonstrate that p53 posttranslational modifications play a key role in the pathological and apoptotic response of the intestinal stem cells to radiation and can be targeted pharmacologically

    Multi-lectin Affinity Chromatography and Quantitative Proteomic Analysis Reveal Differential Glycoform Levels between Prostate Cancer and Benign Prostatic Hyperplasia Sera.

    Get PDF
    Currently prostate-specific antigen is used for prostate cancer (PCa) screening, however it lacks the necessary specificity for differentiating PCa from other diseases of the prostate such as benign prostatic hyperplasia (BPH), presenting a clinical need to distinguish these cases at the molecular level. Protein glycosylation plays an important role in a number of cellular processes involved in neoplastic progression and is aberrant in PCa. In this study, we systematically interrogate the alterations in the circulating levels of hundreds of serum proteins and their glycoforms in PCa and BPH samples using multi-lectin affinity chromatography and quantitative mass spectrometry-based proteomics. Specific lectins (AAL, PHA-L and PHA-E) were used to target and chromatographically separate core-fucosylated and highly-branched protein glycoforms for analysis, as differential expression of these glycan types have been previously associated with PCa. Global levels of CD5L, CFP, C8A, BST1, and C7 were significantly increased in the PCa samples. Notable glycoform-specific alterations between BPH and PCa were identified among proteins CD163, C4A, and ATRN in the PHA-L/E fraction and among C4BPB and AZGP1 glycoforms in the AAL fraction. Despite these modest differences, substantial similarities in glycoproteomic profiles were observed between PCa and BPH sera
    • ÔÇŽ