37,600 research outputs found

    Near Surface Geophysical Archaeological Prospection at the Prehistoric Site of Akrotiri on Santorini/Thera

    Get PDF
    In February 2014 high-resolution ground penetrating radar and earth resistance tomography measurements have for the first time been used successfully for the distinct mapping of buried archaeological structures in the vicinity of the Bronze Age archaeological site of Akrotiri on Santorini/Thera in Greece

    Neural Substrates of Semantic Prospection – Evidence from the Dementias

    Get PDF
    The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15) and disease-matched behavioral-variant frontotemporal dementia (n = 15), neurodegenerative disorders characterized by significant medial temporal lobe (MTL) and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic) and non-personal (semantic) domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1-weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between gray matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal, and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of lateralization effects depending on the type of information being simulated. Whereas episodic future thinking related to right hippocampal integrity, semantic future thinking was found to relate to left hippocampal integrity. Our findings support previous observations of significant MTL involvement for semantic forms of prospection and point to distinct neurocognitive mechanisms which must be functional to support future-oriented forms of thought across personal and non-personal contexts

    Children's Planning Performance in the Zoo Map Task (BADS-C) : Is It Driven by General Cognitive Ability, Executive Functioning, or Prospection?

    Get PDF
    Preparation of this article was partially funded by the Swiss National Science Foundation (SNSF; 100014_152841) and the Natural Sciences and Engineering Council of Canada (NSERC; RGPIN-2015-03774).Peer reviewedPostprin

    How efficient is an integrative approach in archaeological geophysics? Comparative case studies from Neolithic settlements in Thessaly (Central Greece)

    Get PDF
    The geophysical prospection of Neolithic tells imposes specific challenges due to the preservation and nature of the architectural context and the multiple, usually disturbed, soil strata. Contrary to the usual application of a single method, this paper deals with the advantages of using an integrated geophysical approach through the employment of various methodologies to map the Neolithic cul-tural and environmental landscape of Thessalian tells (magoules) in Central Greece. The success and failure of each method in resolving the various features of the magoules are discussed in detail, and as a whole, they demonstrate the benefits of a manifold geophysical prospection of the sites

    Towards cost-efficient prospection and 3D visualization of underwater structures using compact ROVs

    Get PDF
    The deployment of Remotely Operated Vehicles (ROV) for underwater prospection and 3D visualization has grown significantly in civil applications for a few decades. The demand for a wide range of optical and physical parameters of underwater environments is explained by an increasing complexity of the monitoring requirements of these environments. The prospection of engineering constructions (e.g. quay walls or enclosure doors) and underwater heritage (e.g. wrecks or sunken structures) heavily relies on ROV systems. Furthermore, ROVs offer a very flexible platform to measure the chemical content of the water. The biggest bottleneck of currently available ROVs is the cost of the systems. This constrains the availability of ROVs to a limited number of companies and institutes. Fortunately, as with the recent introduction of cost-efficient Unmanned Aerial Vehicles on the consumer market, a parallel development is expected for ROVs. The ability to participate in this new field of expertise by building Do It Yourself (DIY) kits and by adapting and adding on-demand features to the platform will increase the range of this new technology. In this paper, the construction of a DIY OpenROV kit and its implementation in bathymetric research projects are elaborated. The original platform contains a modified webcam for visual underwater prospection and a Micro ElectroMechanical System (MEMS) based depth sensor, allowing relative positioning. However, the performance of the standard camera is limited and an absolute positioning system is absent. It is expected that 3D visualizations with conventional photogrammetric qualities are limited with the current system. Therefore, modifications to improve the standard platform are foreseen, allowing the development of a cost-efficient underwater platform. Preliminary results and expectations on these challenges are reported in this paper
    • 

    corecore