370,429 research outputs found

    A mass-loss rate determination for zeta Puppis from the quantitative analysis of X-ray emission line profiles

    Get PDF
    We fit every emission line in the high-resolution Chandra grating spectrum of zeta Pup with an empirical line profile model that accounts for the effects of Doppler broadening and attenuation by the bulk wind. For each of sixteen lines or line complexes that can be reliably measured, we determine a best-fitting fiducial optical depth, tau_* = kappa*Mdot/4{pi}R_{\ast}v_{\infty}, and place confidence limits on this parameter. These sixteen lines include seven that have not previously been reported on in the literature. The extended wavelength range of these lines allows us to infer, for the first time, a clear increase in tau_* with line wavelength, as expected from the wavelength increase of bound-free absorption opacity. The small overall values of tau_*, reflected in the rather modest asymmetry in the line profiles, can moreover all be fit simultaneously by simply assuming a moderate mass-loss rate of 3.5 \pm 0.3 \times 10^{-6} Msun/yr, without any need to invoke porosity effects in the wind. The quoted uncertainty is statistical, but the largest source of uncertainty in the derived mass-loss rate is due to the uncertainty in the elemental abundances of zeta Pup, which affects the continuum opacity of the wind, and which we estimate to be a factor of two. Even so, the mass-loss rate we find is significantly below the most recent smooth-wind H-alpha mass-loss rate determinations for zeta Pup, but is in line with newer determinations that account for small-scale wind clumping. If zeta Pup is representative of other massive stars, these results will have important implications for stellar and galactic evolution.Comment: Accepted for publication in the Monthly Notices of the Royal Astronomical Society. 17 pages, including 14 figures (7 color

    Constraints on porosity and mass loss in O-star winds from modeling of X-ray emission line profile shapes

    Get PDF
    We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant Zeta Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate (<~ 40%) are allowed if moderate porosity effects (h_infinity <~ R_*) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars.Comment: 20 pages, 20 figures. Accepted by Ap

    Constraints On Porosity And Mass Loss In O-Star Winds From The Modeling Of X-Ray Emission Line Profile Shapes

    Get PDF
    We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant zeta Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate (less than or similar to 40%) are allowed if moderate porosity effects (h(infinity) less than or similar to R-*) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars

    Modelling urban floods using a finite element staggered scheme with porosity and anisotropic resistance

    Get PDF
    Artificial porosity models for urban flooding use porosity as a statistical descriptor for the presence of buildings, which are then treated as subgridscale features. Computational efficiency makes porosity models attractive for large-scale applications. These models are typically implemented in the framework of two-dimensional (2D) finite volume collocated schemes. The most effective schemes, falling under the category of Integral Porosity models, allow accounting for a wealth of sub-grid processes, but they are known to suffer from oversensitivity to mesh design in the case of anisotropic porosity fields. In the present exploratory study, a dual porosity approach is implemented into a staggered finite element numerical model. The free surface elevation is defined at grid nodes, where continuity equation is solved; fluxes are conveyed by triangular cells, which act as 2D-links between adjacent grid nodes. The presence of building is modelled using an isotropic porosity in the continuity equation to account for the reduced water storage, and an anisotropic conveyance porosity in the momentum equations to compute bottom shear stress. Both porosities are defined on an element-by-element basis, thus avoiding mesh-dependency. Although suffering a number of limitations, the model shows promising results
    corecore