188,594 research outputs found

    Molecular cloning, expression analysis and assignment of the porcine tumor necrosis factor superfamily member 10 gene (TNFSF10) to SSC13q34 -> q36 by fluorescence in situ hybridization and radiation hybrid mapping

    Get PDF
    We have cloned the complete coding region of the porcine TNFSF10 gene. The porcine TNFSF10 cDNA has an ORF of 870 nucleotides and shares 85 % identity with human TNFSF10, and 75% and 72% identity with rat and mouse Tnfsf10 coding sequences, respectively. The deduced porcine TNFSF10 protein consists of 289 amino acids with the calculated molecular mass of 33.5 kDa and a predicted pI of 8.15. The amino acid sequence similarities correspond to 86, 72 and 70% when compared with human, rat and mouse sequences, respectively. Nor-them blot analysis detected TNFSF10-specific transcripts (similar to 1.7 kb) in various organs of a 10-week-old pig, suggesting ubiquitous expression. Real-time RT-PCR studies of various organs from fetal (days 73 and 98) and postnatal stages (two weeks, eight months) demonstrated developmental and tissue-specific regulation of TNFSF10 mRNA abundance. The chromosomal location of the porcine TNFSF10 gene was determined by FISH of a specific BAC clone to metaphase chromosomes. This TNFSF10 BAC clone has been assigned to SSC13q34 -> q36. Additionally, the localization of the TNFSF10 gene was verified by RH mapping on the porcine IMpRH panel. Copyright (c) 2005S. KargerAG, Basel

    Mapping occurrence of Taenia solium taeniosis/cysticercosis and areas at risk of porcine cysticercosis in Central America and the Caribbean basin

    Get PDF
    Background: This study aimed to map the occurrence of Taenia solium taeniosis/cysticercosis at national level within Central America and the Caribbean basin, and to map the distribution of porcine cysticercosis at first-level administrative subdivision level (department level) and the porcine population at risk. This zoonotic parasite is believed to be widely endemic across most of Latin America. However, there is little information readily available for Central America and the Caribbean basin. Taenia solium has been ranked the most important foodborne parasitic hazard globally and within endemic areas is a common cause of preventable epilepsy. Methods: We conducted a structured literature search in PubMed, supplemented and crossed-referenced with relevant academic databases, grey literature, and active searches in identified literature, to identify all records of T. solium presence in Central America and the Caribbean basin between 1986 and April 2017. To retrieve grey literature, government entities, researchers and relevant institutions across the region were contacted in an attempt to cover all countries and territories. Identified records containing data on porcine cysticercosis were geo-referenced to identify department level distribution and compared to modelled distributions of pigs reared under extensive production systems. Results: We identified 51 records of T. solium at the national level, covering 13 countries and an additional three countries were included based on World Organisation for Animal Health (OIE) reports, giving a total of 16 countries out of 41 with evidence of the parasite's presence. Screening records for porcine cysticercosis data at the departmental level confirmed porcine cysticercosis presence in 11 departments across six countries (Colombia, Guatemala, Honduras, Mexico, Nicaragua and Venezuela). Conclusions: When comparing these results to areas where pigs were kept in extensive production systems and areas where no information on porcine cysticercosis exists, it is apparent that porcine cysticercosis is likely to be underreported, and that a substantial part of the regional pig population could be at risk of contracting porcine cysticercosis. More detailed information on the distribution of T. solium and accurate burden estimations are urgently needed to grasp the true extent of this zoonotic parasite and the public health and agricultural problems it potentially poses

    A phage-displayed peptide recognizing porcine aminopeptidase N is a potent small molecule inhibitor of PEDV entry

    Get PDF
    Three phage-displayed peptides designated H, S and F that recognize porcine aminopeptidase N (pAPN), the cellular receptor of porcine transmissible gastroenteritis virus (TGEV) were able to inhibit cell infection by TGEV. These same peptides had no inhibitory effects on infection of Vero cells by porcine epidemic diarrhea virus (PEDV). However, when PEDV, TGEV and porcine pseudorabies virus were incubated with peptide H (HVTTTFAPPPPR), only infection of Vero cells by PEDV was inhibited. Immunofluorescence assays indicated that inhibition of PEDV infection by peptide H was independent of pAPN. Western blots demonstrated that peptide H interacted with PEDV spike protein and that pre-treatment of PEDV with peptide H led to a higher inhibition than synchronous incubation with cells. These results indicate direct interaction with the virus is necessary to inhibit infectivity. Temperature shift assays demonstrated that peptide H inhibited pre-attachment of the virus to the cells

    Identification of a porcine liver eomes-high-T-bet-low NK cell subset that resembles human liver resident NK cells

    Get PDF
    Natural killer (NK) cells are cells of the innate immunity and play an important role in the defense against viral infections and cancer, but also contribute to shaping adaptive immune responses. Long-lived tissue-resident NK cells have been described in man and mouse, particularly in the liver, contributing to the idea that the functional palette of NK cells may be broader than originally thought, and may include memory-like responses and maintaining tissue homeostasis. Remarkably, liver resident (lr)NK cells in man and mouse show substantial species-specific differences, in particular reverse expression patterns of the T-box transcription factors Eomesodermin (Eomes) and T-bet (Eomes(high)T-bet(low) in man and vice versa in mouse). In pig, compared to blood NK cells which are CD3-CD8 alpha(high) cells, the porcine liver contains an abundant additional CD3-CD8 alpha(dim) NK cell subpopulation. In the current study, we show that this porcine CD3-CD8 alpha(dim) liver NK population is highly similar to its human lrNK counterpart and therefore different from mouse lrNK cells. Like human lrNK cells, this porcine NK cell population shows an Eomes(high)T-bet(low) expression pattern. In addition, like its human counterpart, the porcine liver NK population is CD49e(-) and CXCR6(+). Furthermore, the porcine Eomes(high)T-bet(low) liver NK cell population is able to produce IFN-gamma upon IL-2/12/18 stimulation but lacks the ability to kill K562 or pseudorabies virus-infected target cells, although limited degranulation could be observed upon incubation with K562 cells or upon CD16 crosslinking. All together, these results show that porcine Eomes(high)T-bet(low) NK cells in the liver strongly resemble human lrNK cells, and therefore indicate that the pig may represent a unique model to study the function of these lrNK cells in health and disease

    Immunoregulatory effects triggered by immunobiotic Lactobacillus jensenii TL2937 strain involve efficient phagocytosis in porcine antigen presenting cells

    Get PDF
    Background: Immunobiotic Lactobacillus jensenii TL2937 modulates porcine mononuclear phagocytes from Peyer?s patches (PPMPs) and induces a differential production of pro- and anti-inflammatory cytokines in response to Toll-like receptor (TLR)-4 activation. Objective: In view of the important role played by phagocytosis in the activation of antigen presenting cells (APCs), the aim of the present work was to examine the interaction of TL2937 with porcine PPMPs focusing on phagocytosis. In addition, this study aimed to investigate whether the effects of L. jensenii TL2937 in porcine blood monocyte-derived dendritic cells (MoDCs) are similar to those found in PPMPs considering that MoDCs do not recapitulate all functions of mucosal APCs. Results: studies showed a high ability of porcine CD172a+ PPMPs to phagocytose L. jensenii TL2937. Interestingly, our results also revealed a reduced capacity of the non-immunomodulatory L. plantarum TL2766 to be phagocytosed by those immune cells. Phagocytosis of L. jensenii TL2937 by porcine PPMPs was partially dependent on TLR2. In addition, we demonstrated that TL2937 strain was able to improve the expression of IL-1, IL-12 and IL-10 in immature MoDCs resembling the effect of this immunobiotic bacterium on PPMPs. Moreover, similarly to PPMPs those immunomodulatory effects were related to the higher capacity of TL2937 to be phagocytosed by immature MoDCs. Conclusions: Microbial recognition in APCs could be effectively mediated through ligand-receptor interactions that then mediate phagocytosis and signaling. For the immunobiotic strain TL2937, TLR2 has a partial role for its interaction with porcine APCs and it is necessary to investigate the role of other receptors. A challenge for future research will be advance in the full understanding of the molecular interactions of immunobiotic L. jensenii TL2937 with porcine APCs that will be crucial for the successful development of functional feeds for the porcine host. This study is a step in that direction.Fil: Tsukida, Kohichiro. Tohoku University; Jap贸nFil: Takahashi, Takuya. Tohoku University; Jap贸nFil: Iida, Hikaru. Tohoku University; Jap贸nFil: Kanmani, Paulraj. Tohoku University; Jap贸nFil: Suda, Yoshihito. Miyagi University; Jap贸nFil: Nochi, Tomonori. Tohoku University; Jap贸nFil: Ohwada, Shuichi. Tohoku University; Jap贸nFil: Aso, Hisashi. Tohoku University; Jap贸nFil: Ohkawara, Sou. Meiji Seika Pharma Co., Ltd. Agricultural & Veterinary Division; Jap贸nFil: Makino, Seiya. Meiji Co., Ltd. Division of Research and Development; Jap贸nFil: Kano, Hiroshi. Meiji Co., Ltd. Division of Research and Development; Jap贸nFil: Saito, Tadao. Tohoku University; Jap贸nFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Conicet - Tucum谩n. Centro de Referencia para Lactobacilos; ArgentinaFil: Kitazawa, Haruki. Tohoku University; Jap贸

    Comparative host specificity of human- and pig- associated Staphylococcus aureus clonal lineages.

    Get PDF
    Bacterial adhesion is a crucial step in colonization of the skin. In this study, we investigated the differential adherence to human and pig corneocytes of six Staphylococcus aureus strains belonging to three human-associated [ST8 (CC8), ST22 (CC22) and ST36(CC30)] and two pig-associated [ST398 (CC398) and ST433(CC30)] clonal lineages, and their colonization potential in the pig host was assessed by in vivo competition experiments. Corneocytes were collected from 11 humans and 21 pigs using D-squame庐 adhesive discs, and bacterial adherence to corneocytes was quantified by a standardized light microscopy assay. A previously described porcine colonization model was used to assess the potential of the six strains to colonize the pig host. Three pregnant, S. aureus-free sows were inoculated intravaginally shortly before farrowing with different strain mixes [mix 1) human and porcine ST398; mix 2) human ST36 and porcine ST433; and mix 3) human ST8, ST22, ST36 and porcine ST398] and the ability of individual strains to colonize the nasal cavity of newborn piglets was evaluated for 28 days after birth by strain-specific antibiotic selective culture. In the corneocyte assay, the pig-associated ST433 strain and the human-associated ST22 and ST36 strains showed significantly greater adhesion to porcine and human corneocytes, respectively (p<0.0001). In contrast, ST8 and ST398 did not display preferential host binding patterns. In the in vivo competition experiment, ST8 was a better colonizer compared to ST22, ST36, and ST433 prevailed over ST36 in colonizing the newborn piglets. These results are partly in agreement with previous genetic and epidemiological studies indicating the host specificity of ST22, ST36 and ST433 and the broad-host range of ST398. However, our in vitro and in vivo experiments revealed an unexpected ability of ST8 to adhere to porcine corneocytes and persist in the nasal cavity of pigs

    Serosurvey for viruses associated with reproductive failure in newly introduced gilts and in multiparous sows in Belgian sow herds

    Get PDF
    A serosurvey for viruses associated with reproductive disorders was conducted in 25 conventional Belgian farms. Serum antibody titers for porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine enteroviruses (PEV) and swine influenza viruses (SIV) were determined in gilts and sows. All the animals were seropositive for PCV2 and >95% were seropositive for all 4 embryopathogenic PEV serotypes. Consequently, special preventive measures appear to be unnecessary for these viruses. In I farm, non-vaccinated gilts were found to run a risk of developing PPV-induced reproductive disorders. Vaccination against PPV could exclude this risk. In 10 farms, gilts seronegative for one or more specific SIV subtypes were introduced into a herd that had previously been infected with the same subtypes. Vaccination of gilts against SIV may prevent reproductive disorders in gilts and respiratory problems in their offspring. In I farm, newly purchased gilts that were possibly shedding PRRSV were introduced into a PRRSV seronegative sow herd. Serological screening prior to purchase or vaccination of the sows could have resolved this dangerous situation

    Histologic evaluation of bone healing of adjacent alveolar sockets grafted with bovine- and porcine-derived bone: a comparative case report in humans

    Get PDF
    To evaluate and compare histomorphometrically the bone response to two xenografts, one bovine and the other porcine, grafted in adjacent extraction sockets in a human. In this case report, two adjacent maxillary premolars were extracted, and the sockets were filled with two different xenogeneic bone substitutes (first premolar with bovine bone, and second premolar with porcine bone) to counteract post-extraction volume loss. Following 6 months bone core specimens were harvested during the placement of implants at the regenerated sites. Histomorphometrically, for the bovine xenograft the percentage of newly formed bone (osteoid) was 26.85%, the percentage of the residual graft material was 17.2% and the percentage of connective tissue 48.73%, while for the porcine xenograft, newly formed bone (osteoid) represented 32.19%, residual graft material was 6.57% and non-mineralized connective tissue was 52.99%. Histological results indicated that both biomaterials assessed in this study as grafts for socket preservation technique are biocompatible and osteoconductive. Bovine bone derived demonstrated to be less resorbable than porcine bone derived. Both xenogenic biomaterials did not interfere with the normal bone reparative processe

    Porcine Colostrum Protects the IPEC-J2 Cells and Piglet Colon Epithelium against Clostridioides (syn. Clostridium) difficile Toxin-Induced Effects

    Get PDF
    Clostridioides difficile toxins are one of the main causative agents for the clinical symptoms observed during C. difficile infection in piglets. Porcine milk has been shown to strengthen the epithelial barrier function in the piglet鈥檚 intestine and may have the potential to neutralise clostridial toxins. We hypothesised that porcine colostrum exerts protective effects against those toxins in the IPEC-J2 cells and in the colon epithelium of healthy piglets. The IPEC-J2 cells were treated with either the toxins or porcine colostrum or their combination. Analyses included measurement of trans-epithelial electrical resistance (TEER), cell viability using propidium iodide by flow cytometry, gene expression of tight junction (TJ) proteins and immune markers, immunofluorescence (IF) histology of the cytoskeleton and a TJ protein assessment. Colon tissue explants from one- and two-week-old suckling piglets and from five-week-old weaned piglets were treated with C. difficile toxins in Ussing chamber assays to assess the permeability to macromolecules (FITC-dextran, HRP), followed by analysis of gene expression of TJ proteins and immune markers. Toxins decreased viability and integrity of IPEC-J2 cells in a time-dependent manner. Porcine colostrum exerted a protective effect against toxins as indicated by TEER and IF in IPEC-J2 cells. Toxins tended to increase paracellular permeability to macromolecules in colon tissues of two-week-old piglets and downregulated gene expression of occludin in colon tissues of five-week-old piglets (p = 0.05). Porcine milk including colostrum, besides other maternal factors, may be one of the important determinants of early immune programming towards protection from C. difficile infections in the offspring

    Salmonella Typhimurium resides largely as an extracellular pathogen in porcine tonsils, independently of biofilm-associated genes csgA, csgD and adrA

    Get PDF
    In European countries, Salmonella enterica subspecies enterica serovar Typhimurium (Salmonella Typhimurium) is the serovar most frequently isolated from slaughter pigs1. Porcine carcass contamination with Salmonella Typhimurium can largely be attributed to persistently infected pigs. Even though tonsils are a predilection site for Salmonella persistence in pigs, virulence mechanisms necessary for cell invasion and intracellular survival do not contribute to tonsillar colonization2, suggesting that Salmonella Typhimurium resides mainly extracellularly in porcine tonsils. Biofilm formation is a mechanism used by several bacteria to survive in an extracellular context or in hostile environments3. The role of biofilm formation in Salmonella Typhimurium persistence in pigs is still unknown. It was the aim of the present study to determine whether Salmonella Typhimurium persists intracellularly or extracellularly in tonsils of pigs. Additionally, the role of biofilm formation in persistence of Salmonella Typhimurium in porcine tonsils was determined
    corecore