1,055 research outputs found

    Robust SrTiO3 Passivation of Silicon Photocathode by Reduced Graphene Oxide for Solar Water Splitting

    Get PDF
    Development of a robust photocathode using lowcost and high-performing materials, e.g., p-Si, to produce clean fuel hydrogen has remained challenging since the semiconductor substrate is easily susceptible to (photo)corrosion under photoelectrochemical (PEC) operational conditions. A protective layer over the substrate to simultaneously provide corrosion resistance and maintain efficient charge transfer across the device is therefore needed. To this end, in the present work, we utilized pulsed laser deposition (PLD) to prepare a high-quality SrTiO3 (STO) layer to passivate the p-Si substrate using a buffer layer of reduced graphene oxide (rGO). Specifically, a very thin (3.9 nm ∼10 unit cells) STO layer epitaxially overgrown on rGO-buffered Si showed the highest onset potential (0.326 V vs RHE) in comparison to the counterparts with thicker and/or nonepitaxial STO. The photovoltage, flat-band potential, and electrochemical impedance spectroscopy measurements revealed that the epitaxial photocathode was more beneficial for charge separation, charge transfer, and targeted redox reaction than the nonepitaxial one. The STO/rGO/Si with a smooth and highly epitaxial STO layer outperforming the directly contacted STO/Si with a textured and polycrystalline STO layer showed the importance of having a well-defined passivation layer. In addition, the numerous pinholes formed in the directly contacted STO/Si led to the rapid degradation of the photocathode during the PEC measurements. The stability tests demonstrated the soundness of the epitaxial STO layer in passivating Si against corrosion. This study provided a facile approach for preparing a robust protection layer over a photoelectrode substrate in realizing an efficient and, at the same time, durable PEC device

    Microwave characterization of two Ba 0.6 Sr 0.4 TiO 3 dielectric thin films with out-of-plane and in-plane electrode structures

    Get PDF
    Ferroelectric (FE) thin films have recently attracted renewed interest in research due to their great potential for designing novel tunable electromagnetic devices such as large intelligent surfaces (LISs). However, the mechanism of how a polar structure in the FE thin films contributes to desired tunable performance, especially within the microwave frequency range, which is the most widely used frequency range of electromagnetics, has not been illustrated clearly. In this paper, we described several straightforward and cost-effective methods to fabricate and characterize Ba0.6Sr0.4TiO3 (BST) thin films at microwave frequencies. The prepared BST thin films here exhibit homogenous structures and great tunability (η) in a wide frequency and temperature range when the applied field is in the out-of-plane direction. The high tunability can be attributed to high concentration of polar nanoclusters. Their response to the applied direct current (DC) field was directly visualized using a novel non-destructive near-field scanning microwave microscopy (NSMM) technique. Our results have provided some intriguing insights into the application of the FE thin films for future programmable high-frequency devices and systems.</p

    Electrode-dependent asymmetric conduction mechanisms in K0.5Na0.5NbO3 micro-capacitors

    Get PDF
    The ultimate performance of devices employing lead-free piezoelectrics is determined not only by the intrinsic properties of the piezo, but also by processes and materials employed to create the electric contacts. In this paper, we investigate the impact of different metallic electrodes with increasing chemical reactivity (Pt, Ni, Ti, Cr), on the asymmetric behavior of the leakage current in M/K0.5Na0.5NbO3/Pt(111) micro-capacitors, where M stands for the top metallic electrode. For all electrodes we found a marked leakage asymmetry that we ascribed to the presence of a Schottky-like rectifying junction at the M/K0.5Na0.5NbO3/Pt(111) bottom interface, while the corresponding junction at the top interface is deeply affected by the creation of oxygen vacancies due to oxygen scavenging during the growth of the top metallic electrodes, leading to an almost ohmic top contact. The leakage increases with the reactivity of the electrodes, while the asymmetry decreases, thus suggesting that the creation of the top metal/K0.5Na0.5NbO3 interface generates oxygen vacancies diffusing down to the bottom interface and impacting on the rectifying behavior of the Schottky-like junction. Noteworthy, this asymmetric conduction can reflect in an asymmetric piezoelectric and ferroelectric behavior, as a sizable portion of the applied voltage drops across the rectifying junction in reverse bias, thus hampering symmetric bipolar operation, especially in leaky materials

    Fabrication and Characterization of AlN-based, CMOS compatible Piezo-MEMS Devices

    Full text link
    This paper details the development of high-quality, c-axis oriented AlN thin films up to 2 {\mu}m thick, using sputtering on platinum-coated SOI substrates for use in piezoelectric MEMS. Our comprehensive studies illustrate how important growth parameters such as the base Pt electrode quality, deposition temperature, power, and pressure, can influence film quality. With careful adjustment of these parameters, we managed to manipulate residual stresses (from compressive -1.2 GPa to tensile 230 MPa), and attain a high level of orientation in the AlN thin films, evidenced by < 5deg FWHM X-Ray diffraction peak widths. We also report on film surface quality regarding roughness, as assessed by atomic force microscopy, and grain size, as determined through scanning electron microscopy. Having attained the desired film quality, we proceeded to a fabrication process to create piezoelectric micromachined ultrasound transducers (PMUTs) with the AlN on SOI material stack, using deep reactive ion etching (DRIE). Initial evaluations of the vibrational behavior of the created devices, as observed through Laser Doppler Vibrometry, hint at the potential of these optimized AlN thin films for MEMS transducer development

    Solar-driven water electrolysis:new multijunction solar cells and electrolysis materials

    Get PDF
    corecore