82,579 research outputs found

    Synthesis of human plasminogen by the liver

    Get PDF
    Genetic types of plasminogen were determined from a donor and a recipient before and after hepatic homotransplantation. Examination of the plasminogen types demonstrated that the liver is the principal site of synthesis of human plasminogen. Copyright © 1980 AAAS

    Early increases in plasminogen activator activity following partial hepatectomy in humans

    Get PDF
    Background Increases in urokinase-like plasminogen activator (uPA) activity are reported to be amongst the earliest events occurring in remnant liver following partial hepatectomy in rats, and have been proposed as a key component of the regenerative response. Remodelling of the extracellular matrix, conversion of single chain hepatocyte growth factor to the active two-chain form and a possible activation of a mitogenic signalling pathway have all been ascribed to the increased uPA activity. The present study aimed to determine whether similar early increases in uPA activity could be detected in the remnant liver following resection of metastatic tumours in surgical patients. Results Eighteen patients undergoing partial hepatectomy for the removal of hepatic metastases secondary to primary colonic tumours were studied. Increased plasminogen activator activity was found in the final liver samples for the group of patients in whom the resection size was at least 50%. For smaller resections, the increased activity was not observed. The increased activity did not correlate with the age of the patient or with the time between the start of resection and the end of the operation. There was, however, a negative correlation between plasminogen activator activity and the time for which blood supply to the liver was clamped. Conclusions Our findings are in accordance with those from experimental animal models and show, for the first time, that rapid increases in plasminogen activator activity can occur following similarly large liver resection in humans. Thus, increases in plasminogen activator activity are an early event in the remnant liver following major liver resection in man. Our observations provide support for the contention that increases in plasminogen activators play a key role in the initiation of hepatic regeneration in man

    Effects of stage of lactation and time of year on plasmin-derived proteolytic activity in bovine milk in New Zealand

    Get PDF
    The objective of this study was to determine the effects of stage of lactation (SOL) and time of year on plasmin-derived proteolytic activity in the milk of pasture-fed dairy cows in New Zealand. Four herds of 20 Friesian cows were used, one herd calving in each of January, April, July and October. Cows grazed ryegrass/white clover pasture only, except during June (winter) when all cows received supplementary pasture silage. Milk samples were collected on four occasions during the year (spring, summer, autumn and winter) from each cow in milk, to give a total of three samples per cow (early, mid and late lactation; c. 30, 120 and 220 days after calving, respectively). Milk samples were analysed for plasmin-derived proteolytic activity. There was no effect of either SOL or time of year on plasmin activity and therefore yields of plasmin followed patterns in milk yield (highest in early lactation and in summer). There were effects of both SOL and time of year on plasminogen-derived and total plasmin plus plasminogen-derived activity, both of which were highest in late lactation and in spring. Changes in plasminogen-derived activity and total plasmin plus plasminogen-derived activity due to SOL were not only due to the decrease in milk yield associated with advancing lactation, because enzyme yields were also increased with advancing lactation. Similarly, effects of time of year on plasminogen-derived activity and total plasmin plus plasminogen-derived activity could not be attributed solely to concomitant changes in milk yield, and may be influenced by the variation in the quality and quantity of feed during the year inherent in a pasture-based dairy system. Effects of SOL on proteolytic activity were greater than, and independent of, effects of time of year

    Protease inhibitors prevent plasminogen-mediated, but not pemphigus vulgaris-induced, acantholysis in human epidermis

    Get PDF
    Pemphigus is an autoimmune blistering disease of the skin and mucous membranes. It is caused by autoantibodies directed against desmosomes, which are the principal adhesion structures between epidermal keratinocytes. Binding of autoantibodies leads to the destruction of desmosomes resulting in the loss of cell-cell adhesion (acantholysis) and epidermal blisters. The plasminogen activator system has been implicated as a proteolytic effector in pemphigus. We have tested inhibitors of the plasminogen activator system with regard to their potential to prevent pemphigus-induced cutaneous pathology. In a human split skin culture system, IgG preparations of sera from pemphigus vulgaris patients caused histopathologic changes (acantholysis) similar to those observed in the original pemphigus disease. All inhibitors that were tested (active site inhibitors directed against uPA, tPA, and/or plasmin; antibodies neutralizing the enzymatic activity of uPA or tPA; substances interfering with the binding of uPA to its specific cell surface receptor uPAR) failed to prevent pemphigus vulgaris IgG-mediated acantholysis. Plasminogen-mediated acantholysis, however, was effectively antagonized by the synthetic active site serine protease inhibitor WX-UK1 or by p-aminomethylbenzoic acid. Our data argue against applying anti-plasminogen activator/anti-plasmin strategies in the management of pemphigus

    Staphylococcus aureus proteins Sbi and Efb recruit human plasmin to degrade complement C3 and C3b

    Get PDF
    Upon host infection, the human pathogenic microbe Staphylococcus aureus (S. aureus) immediately faces innate immune reactions such as the activated complement system. Here, a novel innate immune evasion strategy of S. aureus is described. The staphylococcal proteins surface immunoglobulin-binding protein (Sbi) and extracellular fibrinogen-binding protein (Efb) bind C3/C3b simultaneously with plasminogen. Bound plasminogen is converted by bacterial activator staphylokinase or by host-specific urokinase-type plasminogen activator to plasmin, which in turn leads to degradation of complement C3 and C3b. Efb and to a lesser extend Sbi enhance plasmin cleavage of C3/C3b, an effect which is explained by a conformational change in C3/C3b induced by Sbi and Efb. Furthermore, bound plasmin also degrades C3a, which exerts anaphylatoxic and antimicrobial activities. Thus, S. aureus Sbi and Efb comprise platforms to recruit plasmin(ogen) together with C3 and its activation product C3b for efficient degradation of these complement components in the local microbial environment and to protect S. aureus from host innate immune reactions

    Diagnostic Ultrasound Induced Inertial Cavitation To Non-Invasively Restore Coronary And Microvascular Flow In Acute Myocardial Infarction

    Get PDF
    Ultrasound induced cavitation has been explored as a method of dissolving intravascular and microvascular thrombi in acute myocardial infarction. The purpose of this study was to determine the type of cavitation required for success, and whether longer pulse duration therapeutic impulses (sustaining the duration of cavitation) could restore both microvascular and epicardial flow with this technique. Accordingly, in 36 hyperlipidemic atherosclerotic pigs, thrombotic occlusions were induced in the mid-left anterior descending artery. Pigs were then randomized to either a) 1/2 dose tissue plasminogen activator (0.5 mg/kg) alone; or same dose plasminogen activator and an intravenous microbubble infusion with either b) guided high mechanical index short pulse (2.0 MI; 5 usec) therapeutic ultrasound impulses; or c) guided 1.0 mechanical index long pulse (20 usec) impulses. Passive cavitation detectors indicated the high mechanical index impulses (both long and short pulse duration) induced inertial cavitation within the microvasculature. Epicardial recanalization rates following randomized treatments were highest in pigs treated with the long pulse duration therapeutic impulses (83% versus 59% for short pulse, and 49% for tissue plasminogen activator alone; p \u3c 0.05). Even without epicardial recanalization, however, early microvascular recovery occurred with both short and long pulse therapeutic impulses (p \u3c 0.005 compared to tissue plasminogen activator alone), and wall thickening improved within the risk area only in pigs treated with ultrasound and microbubbles. We conclude that although short pulse duration guided therapeutic impulses from a diagnostic transducer transiently improve microvascular flow, long pulse duration therapeutic impulses produce sustained epicardial and microvascular re-flow in acute myocardial infarction

    Mutant and chimeric recobinant plasminogen activatorsproduction in eukaryotic cellsand preliminary characterization

    Get PDF
    Mutant urokinase-type plasminogen activator (u-PA) genes and hybrid genes between tissue-type plasminogen activator (t-PA) and u-PA have been designed to direct the synthesis of new plasminogen activators and to investigate the structure-function relationship in these molecules. The following classes of constructs were made starting from cDNA encoding human t-PA or u-PA: 1) u-PA mutants in which the Arg156 and Lys158 were substituted with threonine, thus preventing cleavage by thrombin and plasmin; 2) hybrid molecules in which the NH2-terminal regions of t-PA (amino acid residues 1-67, 1-262, or 1-313) were fused with the COOH-terminal region of u-PA (amino acids 136-411, 139-411, or 195-411, respectively); and 3) a hybrid molecule in which the second kringle of t-PA (amino acids 173-262) was inserted between amino acids 130 and 139 of u-PA. In all cases but one, the recombinant proteins, produced by transfected eukaryotic cells, were efficiently secreted in the culture medium. The translation products have been tested for their ability to activate plasminogen after in situ binding to an insolubilized monoclonal antibody directed against urokinase. All recombinant enzymes were shown to be active, except those in which Lys158 of u-PA was substituted with threonine. Recombination of structural regions derived from t-PA, such as the finger, the kringle 2, or most of the A-chain sequences, with the protease part or the complete u-PA molecule did not impair the catalytic activity of the hybrid polypeptides. This observation supports the hypothesis that structural domains in t-PA and u-PA fold independently from one to another
    corecore