23,926 research outputs found

    A conserved phosphorylation site regulates the transcriptional function of ETHYLENE-INSENSITIVE3-like1 in tomato

    Get PDF
    ETHYLENE-INSENSITIVE3/ETHYLENE-INSENSITIVE3-like (EIN3/EIL) transcription factors are important downstream components of the ethylene transduction pathway known to regulate the transcription of early ethylene-responsive genes in plants. Previous studies have shown that phosphorylation can repress their transcriptional activity by promoting protein degradation. The present study identifies a new phosphorylation region named EPR1 (EIN3/EIL phosphorylation region 1) in tomato EIL1 proteins. The functional significance of EPR1 was tested by introducing mutations in this region of the Sl-EIL1 gene and by expressing these mutated versions in transgenic tomato plants. Transient expression data and phenotypic analysis of the transgenic lines indicated that EPR1 is essential for the transcriptional activity of Sl-EIL1. Moreover, mutation in the EPR1 site that prevents phosphorylation abolishes ethylene constitutive responses normally displayed by the Sl-EIL1-overexpressing lines. Bimolecular fluorescence complementation (BiFC) studies showed that the presence of a functional phosphorylation site within EPR1 is instrumental in the dimerization of Sl-EIL1 proteins. The results illuminate a new molecular mechanism for the control of EIN3/EIL activity and propose a model where phosphorylation within the EPR1 promotes the dimerization process allowing the initiation of EIL-mediated transcription of early ethylene-regulated genes

    Genome-wide analysis to predict protein sequence variations that change phosphorylation sites or their corresponding kinases

    Get PDF
    We define phosphovariants as genetic variations that change phosphorylation sites or their interacting kinases. Considering the essential role of phosphorylation in protein functions, it is highly likely that phosphovariants change protein functions and may constitute a proportion of the mechanisms by which genetic variations cause individual differences or diseases. We categorized phosphovariants into three subtypes and developed a system that predicts them. Our method can be used to screen important polymorphisms and help to identify the mechanisms of genetic diseases

    PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor

    Get PDF
    The PhosPhAt database provides a resource consolidating our current knowledge of mass spectrometry-based identified phosphorylation sites in Arabidopsis and combines it with phosphorylation site prediction specifically trained on experimentally identified Arabidopsis phosphorylation motifs. The database currently contains 1187 unique tryptic peptide sequences encompassing 1053 Arabidopsis proteins. Among the characterized phosphorylation sites, there are over 1000 with unambiguous site assignments, and nearly 500 for which the precise phosphorylation site could not be determined. The database is searchable by protein accession number, physical peptide characteristics, as well as by experimental conditions (tissue sampled, phosphopeptide enrichment method). For each protein, a phosphorylation site overview is presented in tabular form with detailed information on each identified phosphopeptide. We have utilized a set of 802 experimentally validated serine phosphorylation sites to develop a method for prediction of serine phosphorylation (pSer) in Arabidopsis. An analysis of the current annotated Arabidopsis proteome yielded in 27 782 predicted phosphoserine sites distributed across 17 035 proteins. These prediction results are summarized graphically in the database together with the experimental phosphorylation sites in a whole sequence context. The Arabidopsis Protein Phosphorylation Site Database (PhosPhAt) provides a valuable resource to the plant science community and can be accessed through the following link http://phosphat.mpimp-golm.mpg.d

    Mass Spectrometry-based Methods for Phosphorylation Site Mapping of Hyperphosphorylated Proteins Applied to Net1, a Regulator of Exit from Mitosis in Yeast

    Get PDF
    Prior to anaphase in Saccharomyces cerevisiae, Cdc14 protein phosphatase is sequestered within the nucleolus and inhibited by Net1, a component of the RENT complex in budding yeast. During anaphase the RENT complex disassembles, allowing Cdc14 to migrate to the nucleus and cytoplasm where it catalyzes exit from mitosis. The mechanism of Cdc14 release appears to involve the polo-like kinase Cdc5, which is capable of promoting the dissociation of a recombinant Net1·Cdc14 complex in vitro by phosphorylation of Net1. We report here the phosphorylation site mapping of recombinant Net1 (Net1N) and a mutant Net1N allele (Net1N-19m) with 19 serines or threonines mutated to alanine. A variety of chromatographic and mass spectrometric-based strategies were used, including immobilized metal-affinity chromatography, alkaline phosphatase treatment, matrix-assisted laser-desorption post-source decay, and a multidimensional electrospray mass spectrometry-based approach. No one approach was able to identify all phosphopeptides in the tryptic digests of these proteins. Most notably, the presence of a basic residue near the phosphorylated residue significantly hampered the ability of alkaline phosphatase to hydrolyze the phosphate moiety. A major goal of research in proteomics is to identify all proteins and their interactions and post-translational modification states. The failure of any single method to identify all sites in highly phosphorylated Net1N, however, raises significant concerns about how feasible it is to map phosphorylation sites throughout the proteome using existing technologies

    Large scale localization of protein phosphorylation by use of electron capture dissociation mass spectrometry.

    Get PDF
    We used on-line electron capture dissociation (ECD) for the large scale identification and localization of sites of phosphorylation. Each FT-ICR ECD event was paired with a linear ion trap collision-induced dissociation (CID) event, allowing a direct comparison of the relative merits of ECD and CID for phosphopeptide identification and site localization. Linear ion trap CID was shown to be most efficient for phosphopeptide identification, whereas FT-ICR ECD was superior for localization of sites of phosphorylation. The combination of confident CID and ECD identification and confident CID and ECD localization is particularly valuable in cases where a phosphopeptide is identified just once within a phosphoproteomics experiment

    Evidence for a second phosphorylation site on eIF-2α from rabbit reticulocytes

    Get PDF
    AbstractSer 51 in the NH2-terminal sequence of the α-subunit of eukaryotic peptide initiation factor 2 (eIF-2) has been identified as a second phosphorylation site for the heme-controlled eIF-2α kinase from rabbit reticulocytes. Increased phosphorylation of this serine relative to the previously described phosphorylation site (Ser 48) is observed when the kinase reaction is carried out in the presence of the α-subunit of spectrin. A synthetic peptide corresponding to eIF-2α(41–54) is phosphorylated only in Ser 51 by the eIF-2α kinase

    PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites

    Get PDF
    PHOSIDA, a phosphorylation site database, integrates thousands of phosphosites identified by proteomics in various species
    corecore