3,781 research outputs found

    Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    Get PDF
    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2(−/−)) mouse model did not recapitulate the human disease but showed azoospermia and mitochondrial dysfunctions. We challenged this mouse model with a low glucose and high lipid content diet (ketogenic diet) to stimulate lipid use by mitochondrial beta-oxidation. In the presence of a shortage of co-enzyme A, this diet could evoke a general impairment of bioenergetic metabolism. Only Pank2(−/−) mice fed with a ketogenic diet developed a pantothenate kinase-associated neurodegeneration-like syndrome characterized by severe motor dysfunction, neurodegeneration and severely altered mitochondria in the central and peripheral nervous systems. These mice also showed structural alteration of muscle morphology, which was comparable with that observed in a patient with pantothenate kinase-associated neurodegeneration. We here demonstrate that pantethine administration can prevent the onset of the neuromuscular phenotype in mice suggesting the possibility of experimental treatment in patients with pantothenate kinase-associated neurodegeneration

    metaSHARK: software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella

    Get PDF
    The metabolic SearcH And Reconstruction Kit (metaSHARK) is a new fully automated software package for the detection of enzyme-encoding genes within unannotated genome data and their visualization in the context of the surrounding metabolic network. The gene detection package (SHARKhunt) runs on a Linux systemand requires only a set of raw DNA sequences (genomic, expressed sequence tag and/ or genome survey sequence) as input. Its output may be uploaded to our web-based visualization tool (SHARKview) for exploring and comparing data from different organisms. We first demonstrate the utility of the software by comparing its results for the raw Plasmodium falciparum genome with the manual annotations available at the PlasmoDB and PlasmoCyc websites. We then apply SHARKhunt to the unannotated genome sequences of the coccidian parasite Eimeria tenella and observe that, at an E-value cut-off of 10(-20), our software makes 142 additional assertions of enzymatic function compared with a recent annotation package working with translated open reading frame sequences. The ability of the software to cope with low levels of sequence coverage is investigated by analyzing assemblies of the E.tenella genome at estimated coverages from 0.5x to 7.5x. Lastly, as an example of how metaSHARK can be used to evaluate the genomic evidence for specific metabolic pathways, we present a study of coenzyme A biosynthesis in P.falciparum and E.tenella

    CoA protects against the deleterious effects of caloric overload in Drosophila

    Get PDF
    We developed a Drosophila model of T2D in which high sugar (HS) feeding leads to insulin resistance. In this model, adipose TG storage is protective against fatty acid toxicity and diabetes. Initial biochemical and gene expression studies suggested that deficiency in CoA might underlie reduced TG synthesis in animals during chronic HS feeding. Focusing on the Drosophila fat body (FB), which is specialized for TG storage and lipolysis, we undertook a series of experiments to test the hypothesis that CoA could protect against the deleterious effects of caloric overload. Quantitative metabolomics revealed a reduction in substrate availability for CoA synthesis in the face of an HS diet. Further reducing CoA synthetic capacity by expressing FB-specific RNAi targeting pantothenate kinase (PK orfumble) or phosphopantothenoylcysteine synthase (PPCS) exacerbated HS-diet-induced accumulation of FFAs. Dietary supplementation with pantothenic acid (vitamin B5, a precursor of CoA) was able to ameliorate HS-diet-induced FFA accumulation and hyperglycemia while increasing TG synthesis. Taken together, our data support a model where free CoA is required to support fatty acid esterification and to protect against the toxicity of HS diets

    Insights into molecular mechanisms of disease in Neurodegeneration with Brain Iron Accumulation; unifying theories.

    Get PDF
    Neurodegeneration with brain iron accumulation (NBIA) is a group of disorders characterised by dystonia, parkinsonism and spasticity. Iron accumulates in the basal ganglia and may be accompanied by Lewy bodies, axonal swellings and hyperphosphorylated tau depending on NBIA subtype. Mutations in 10 genes have been associated with NBIA that include Ceruloplasmin (Cp) and Ferritin Light Chain (FTL), both directly involved in iron homeostasis, as well as Pantothenate Kinase 2 (PANK2), Phospholipase A2 group 6 (PLA2G6), Fatty acid hydroxylase 2 (FA2H), Coenzyme A synthase (COASY), C19orf12, WDR45 and DCAF17 (C2orf37). These genes are involved in seemingly unrelated cellular pathways, such as lipid metabolism, Coenzyme A synthesis and autophagy. A greater understanding of the cellular pathways that link these genes and the disease mechanisms leading to iron dyshomeostasis is needed. Additionally, the major overlap seen between NBIA and more common neurodegenerative diseases may highlight conserved disease processes. In this review, we will discuss clinical and pathological findings for each NBIA-related gene, discuss proposed disease mechanisms such as mitochondrial health, oxidative damage, autophagy/mitophagy and iron homeostasis and speculate potential overlap between NBIA subtypes

    Exploring Yeast as a Study Model of Pantothenate Kinase-Associated Neurodegeneration and for the Identification of Therapeutic Compounds

    Get PDF
    Mutations in the pantothenate kinase 2 gene (PANK2) are the cause of pantothenate kinase-associated neurodegeneration (PKAN), the most common form of neurodegeneration with brain iron accumulation. Although different disease models have been created to investigate the pathogenic mechanism of PKAN, the cascade of molecular events resulting from CoA synthesis impairment is not completely understood. Moreover, for PKAN disease, only symptomatic treatments are available. Despite the lack of a neural system, Saccharomyces cerevisiae has been successfully used to decipher molecular mechanisms of many human disorders including neurodegenerative diseases as well as iron-related disorders. To gain insights into the molecular basis of PKAN, a yeast model of this disease was developed: a yeast strain with the unique gene encoding pantothenate kinase CAB1 deleted, and expressing a pathological variant of this enzyme. A detailed functional characterization demonstrated that this model recapitulates the main phenotypes associated with human disease: mitochondrial dysfunction, altered lipid metabolism, iron overload, and oxidative damage suggesting that the yeast model could represent a tool to provide information on pathophysiology of PKAN. Taking advantage of the impaired oxidative growth of this mutant strain, a screening for molecules able to rescue this phenotype was performed. Two molecules in particular were able to restore the multiple defects associated with PKAN deficiency and the rescue was not allele-specific. Furthermore, the construction and characterization of a set of mutant alleles, allowing a quick evaluation of the biochemical consequences of pantothenate kinase (PANK) protein variants could be a tool to predict genotype/phenotype correlation

    Karak syndrome: a novel degenerative disorder of the basal ganglia and cerebellum

    Get PDF
    Two brothers are reported with early onset progressive cerebellar ataxia, dystonia, spasticity, and intellectual decline. • Neuroradiology showed cerebellar atrophy and features compatible with iron deposition in the putamen (including the “eye of the tiger sign”) and substantia nigra. • Diagnosis was compatible with pantothenate kinase associated neuropathy resulting from pantothenate kinase 2 mutation (PKAN due to PANK2) but linkage to PNAK2 was eliminated suggesting Karak syndrome to be a novel disorder. • The “eye of the tiger” sign has previously only been reported to occur in PKAN due to PKAN

    Case report: Novel compound heterozygous variants in the PANK2 gene in a Chinese patient diagnosed with ASD and ADHD

    Get PDF
    The PANK2 gene, which encodes mitochondrial pantothenate kinase 2 protein, is the disease-causing gene for pantothenate kinase-associated neurodegeneration (PKAN). We report a case of atypical PKAN with autism-like symptoms presenting with speech difficulties, psychiatric symptoms, and mild developmental retardation. Magnetic resonance imaging (MRI) of the brain showed the typical “eye-of-the-tiger” sign. Whole-exon sequencing revealed PANK2 p.Ile501Asn/p.Thr498Ser compound heterozygous variants. Our study highlights the phenotypic heterogeneity of PKAN, which can be confused with autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) and requires careful clinical identification

    Acetyl-4'-phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency

    Get PDF
    CITATION: Di Meo, I., et al. 2017. Acetyl-4′-phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency. Scientific Reports, 7:11260, doi:10.1038/s41598-017-11564-8.The original publication is available at https://www.nature.comCoenzyme A is an essential metabolite known for its central role in over one hundred cellular metabolic reactions. In cells, Coenzyme A is synthesized de novo in five enzymatic steps with vitamin B5 as the starting metabolite, phosphorylated by pantothenate kinase. Mutations in the pantothenate kinase 2 gene cause a severe form of neurodegeneration for which no treatment is available. One therapeutic strategy is to generate Coenzyme A precursors downstream of the defective step in the pathway. Here we describe the synthesis, characteristics and in vivo rescue potential of the acetyl-Coenzyme A precursor S-acetyl-4′-phosphopantetheine as a possible treatment for neurodegeneration associated with pantothenate kinase deficiency.https://www.nature.com/articles/s41598-017-11564-8Publisher's versio
    corecore