462,560 research outputs found

    Nonadiabatic approach to dimerization gap and optical absorption coefficient of the Su-Schrieffer-Heeger model

    Full text link
    An analytical nonadiabatic approach has been developed to study the dimerization gap and the optical absorption coefficient of the Su-Schrieffer-Heeger model where the electrons interact with dispersive quantum phonons. By investigating quantitatively the effects of quantum phonon fluctuations on the gap order and the optical responses in this system, we show that the dimerization gap is much more reduced by the quantum lattice fluctuations than the optical absorption coefficient is. The calculated optical absorption coefficient and the density of states do not have the inverse-square-root singularity, but have a peak above the gap edge and there exist a significant tail below the peak. The peak of optical absorption spectrum is not directly corresponding to the dimerized gap. Our results of the optical absorption coefficient agree well with those of the experiments in both the shape and the peak position of the optical absorption spectrum.Comment: 14 pages, 7 figures. to be published in PR

    Optical and transport gaps in gated bilayer graphene

    Full text link
    We discuss the effect of disorder on the band gap measured in bilayer graphene in optical and transport experiments. By calculating the optical conductivity and density of states using a microscopic model in the presence of disorder, we demonstrate that the gap associated with transport experiments is smaller than that associated with optical experiments. Intrinsic bilayer graphene has an optical conductivity in which the energy of the peaks associated with the interband transition are very robust against disorder and thus provide an estimate of the band gap. In contrast, extraction of the band gap from the optical conductivity of extrinsic bilayer graphene is almost impossible for significant levels of disorder due to the ambiguity of the transition peaks. The density of states contains an upper bound on the gap measured in transport experiments, and disorder has the effect of reducing this gap which explains why these experiments have so far been unable to replicate the large band gaps seen in optical measurements.Comment: 5 pages, 5 figures, RevTeX. Published versio

    Ab-initio calculations of the Optical band-gap of TiO2 thin films

    Full text link
    Titanium dioxide has been extensively studied in recent decades for its important photocatalytic application in environmental purification. The search for a method to narrow the optical band-gap of TiO2 plays a key role for enhancing its photocatalytic application. The optical band gap of epitaxial rutile and anatase TiO2 thin films deposited by helicon magnetron sputtering on sapphire and on SrTiO3 substrates was correlated to the lattice constants estimated from HRTEM images and SAED. The optical band-gap of 3.03 eV for bulk-rutile increased for the thin films to 3.37 on sapphire. The band gap of 3.20 eV for bulk-anatase increases to 3.51 on SrTiO3. In order to interpret the optical band gap expansion for both phases, ab-initio calculations were performed using the Vienna ab-initio software. The calculations for rutile as well anatase show an almost linear increase of the band gap width with decreasing volume or increasing lattice constant a. The calculated band gap fits well with the experimental values. The conclusion from these calculations is, in order to achieve a smaller band-gap for both, rutile or anatase, the lattice constants c has to be compressed, and a has to be expanded.Comment: 4 pages, 4 figures, 1 tabl

    The effect of substituted benzene dicarboxylic acid linkers on the optical band gap energy and magnetic coupling in manganese trimer metal organic frameworks

    Get PDF
    We have systematically studied a series of eight metal-organic frameworks (MOFs) in which the secondary building unit is a manganese trimer cluster, and the linkers are differently substituted benzene dicarboxylic acids (BDC). The optical band gap energy of the compounds vary from 2.62 eV to 3.57 eV, and theoretical studies find that different functional groups result in new states in the conduction band, which lie in the gap and lower the optical band gap energy. The optical absorption between the filled Mn 3d states and the ligands is weak due to minimal overlap of the states, and the measured optical band gap energy is due to transitions on the BDC linker. The Mn atoms in the MOFs have local moments of 5 mu B, and selected MOFs are found to be antiferromagnetic, with weak coupling between the cluster units, and paramagnetic above 10 K

    Solid State Properties of Copper- Silver- Sulphide Thin Film Deposited by Solution Growth Technique

    Get PDF
    Chemical bath deposited Copper Silver Sulphide (CuAgS) thin films on glass substrates were studied for its optical properties using spectrophotometer. Some of the optical properties studied include absorbance, transmittance, reflectance, refractive index, optical conductivity, absorption coefficient, dielectric constant and extinction coefficient. The direct band gap obtained is 2.3eV and the indirect band gap is 1.1eV. Some of the possible applications of the film were discusse

    Optical excitations in a one-dimensional Mott insulator

    Full text link
    The density-matrix renormalization-group (DMRG) method is used to investigate optical excitations in the Mott insulating phase of a one-dimensional extended Hubbard model. The linear optical conductivity is calculated using the dynamical DMRG method and the nature of the lowest optically excited states is investigated using a symmetrized DMRG approach. The numerical calculations agree perfectly with field-theoretical predictions for a small Mott gap and analytical results for a large Mott gap obtained with a strong-coupling analysis. Is is shown that four types of optical excitations exist in this Mott insulator: pairs of unbound charge excitations, excitons, excitonic strings, and charge-density-wave (CDW) droplets. Each type of excitations dominates the low-energy optical spectrum in some region of the interaction parameter space and corresponds to distinct spectral features: a continuum starting at the Mott gap (unbound charge excitations), a single peak or several isolated peaks below the Mott gap (excitons and excitonic strings, respectively), and a continuum below the Mott gap (CDW droplets).Comment: 12 pages (REVTEX 4), 12 figures (in 14 eps files), 1 tabl

    Synthesis and Optical Properties of Sprayed ZnO and ZnO:Ga Thin Films

    Get PDF
    Characteristics and optical constants of pure and Ga-doped ZnO thin films have been studied. Pure and Ga-doped zinc oxide thin films were deposited onto glass substrates using the spray pyrolysis technique. Optical absorption studies in the wavelength range of 300–900 nm showed a peak near 450 nm for different doped films (in addition to the peak for un-doped ZnO). Increasing the doping concentration of Ga to 7% induced an increase in the optical constants of films. This increase is attributed to the formation of chargetransfer complexes. ZnO thin films doped with Ga have improved the optical transmittance in the visible region. The addition of Ga also induced an obvious increase in the optical band gap of these films; the optical band gap of Ga-doped films was slightly higher than that of undoped samples (3.1 eV). This study also found that the highest band gap (Eg=3.4 eV) occurred for the film deposited with a doping concentration of 5% gallium

    Measuring many-body effects in carbon nanotubes with a scanning tunneling microscope

    Get PDF
    Electron-electron interactions and excitons in carbon nanotubes are locally measured by combining Scanning tunneling spectroscopy and optical absorption in bundles of nanotubes. The largest gap deduced from measurements at the top of the bundle is found to be related to the intrinsic quasi-particle gap. From the difference with optical transitions, we deduced exciton binding energies of 0.4 eV for the gap and 0.7 eV for the second Van Hove singularity. This provides the first experimental evidence of substrate-induced gap renormalization on SWNTs

    Gap solitons in quasiperiodic optical lattices

    Full text link
    Families of solitons in one- and two-dimensional (1D and 2D) Gross-Pitaevskii equations with the repulsive nonlinearity and a potential of the quasicrystallic type are constructed (in the 2D case, the potential corresponds to a five-fold optical lattice). Stable 1D solitons in the weak potential are explicitly found in three bandgaps. These solitons are mobile, and they collide elastically. Many species of tightly bound 1D solitons are found in the strong potential, both stable and unstable (unstable ones transform themselves into asymmetric breathers). In the 2D model, families of both fundamental and vortical solitons are found and are shown to be stable.Comment: 8 pages, 11 figure
    • …
    corecore