262 research outputs found

    Wi-Fi Location Determination for Semantic Locations

    Get PDF
    In Wi-Fi location determination literature, little attention is paid to locations that do not have numeric, geometric coordinates, though many users prefer the convenience of non-coordinate locations (consider the ease of giving a street address as opposed to giving latitude and longitude). It is not often easy to tell from the title or abstract of a Wi-Fi location determination article whether or not it has applicability to semantic locations such as room-level names. This article surveys the literature through 2011 on Wi-Fi localization for symbolic locations

    Tracking of Human Motion over Time

    Get PDF

    Minimal Infrastructure Radio Frequency Home Localisation Systems

    Get PDF
    The ability to track the location of a subject in their home allows the provision of a number of location based services, such as remote activity monitoring, context sensitive prompts and detection of safety critical situations such as falls. Such pervasive monitoring functionality offers the potential for elders to live at home for longer periods of their lives with minimal human supervision. The focus of this thesis is on the investigation and development of a home roomlevel localisation technique which can be readily deployed in a realistic home environment with minimal hardware requirements. A conveniently deployed Bluetooth ® localisation platform is designed and experimentally validated throughout the thesis. The platform adopts the convenience of a mobile phone and the processing power of a remote location calculation computer. The use of Bluetooth ® also ensures the extensibility of the platform to other home health supervision scenarios such as wireless body sensor monitoring. Central contributions of this work include the comparison of probabilistic and nonprobabilistic classifiers for location prediction accuracy and the extension of probabilistic classifiers to a Hidden Markov Model Bayesian filtering framework. New location prediction performance metrics are developed and signicant performance improvements are demonstrated with the novel extension of Hidden Markov Models to higher-order Markov movement models. With the simple probabilistic classifiers, location is correctly predicted 80% of the time. This increases to 86% with the application of the Hidden Markov Models and 88% when high-order Hidden Markov Models are employed. Further novelty is exhibited in the derivation of a real-time Hidden Markov Model Viterbi decoding algorithm which presents all the advantages of the original algorithm, while producing location estimates in real-time. Significant contributions are also made to the field of human gait-recognition by applying Bayesian filtering to the task of motion detection from accelerometers which are already present in many mobile phones. Bayesian filtering is demonstrated to enable a 35% improvement in motion recognition rate and even enables a floor recognition rate of 68% using only accelerometers. The unique application of time-varying Hidden Markov Models demonstrates the effect of integrating these freely available motion predictions on long-term location predictions

    Evaluating Mobility Predictors in Wireless Networks for Improving Handoff and Opportunistic Routing

    Get PDF
    We evaluate mobility predictors in wireless networks. Handoff prediction in wireless networks has long been considered as a mechanism to improve the quality of service provided to mobile wireless users. Most prior studies, however, were based on theoretical analysis, simulation with synthetic mobility models, or small wireless network traces. We study the effect of mobility prediction for a large realistic wireless situation. We tackle the problem by using traces collected from a large production wireless network to evaluate several major families of handoff-location prediction techniques, a set of handoff-time predictors, and a predictor that jointly predicts handoff location and time. We also propose a fallback mechanism, which uses a lower-order predictor whenever a higher-order predictor fails to predict. We found that low-order Markov predictors, with our proposed fallback mechanisms, performed as well or better than the more complex and more space-consuming compression-based handoff-location predictors. Although our handoff-time predictor had modest prediction accuracy, in the context of mobile voice applications we found that bandwidth reservation strategies can benefit from the combined location and time handoff predictor, significantly reducing the call-drop rate without significantly increasing the call-block rate. We also developed a prediction-based routing protocol for mobile opportunistic networks. We evaluated and compared our protocol\u27s performance to five existing routing protocols, using simulations driven by real mobility traces. We found that the basic routing protocols are not practical for large-scale opportunistic networks. Prediction-based routing protocols trade off the message delivery ratio against resource usage and performed well and comparable to each other

    Dynamic Software Reconfiguration in Sensor Networks

    Get PDF

    Object and Pattern Association for Robot Localization

    Get PDF

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Object and Pattern Association for Robot Localization

    Get PDF

    Personalised privacy in pervasive and ubiquitous systems

    Get PDF
    Our world is edging closer to the realisation of pervasive systems and their integration in our everyday life. While pervasive systems are capable of offering many benefits for everyone, the amount and quality of personal information that becomes available raise concerns about maintaining user privacy and create a real need to reform existing privacy practices and provide appropriate safeguards for the user of pervasive environments. This thesis presents the PERSOnalised Negotiation, Identity Selection and Management (PersoNISM) system; a comprehensive approach to privacy protection in pervasive environments using context aware dynamic personalisation and behaviour learning. The aim of the PersoNISM system is twofold: to provide the user with a comprehensive set of privacy protecting tools and to help them make the best use of these tools according to their privacy needs. The PersoNISM system allows users to: a) configure the terms and conditions of data disclosure through the process of privacy policy negotiation, which addresses the current “take it or leave it” approach; b) use multiple identities to interact with pervasive services to avoid the accumulation of vast amounts of personal information in a single user profile; and c) selectively disclose information based on the type of information, who requests it, under what context, for what purpose and how the information will be treated. The PersoNISM system learns user privacy preferences by monitoring the behaviour of the user and uses them to personalise and/or automate the decision making processes in order to unburden the user from manually controlling these complex mechanisms. The PersoNISM system has been designed, implemented, demonstrated and evaluated during three EU funded projects

    Local-To-Global Hypotheses for Robust Robot Localization

    Get PDF
    Many robust state-of-the-art localization methods rely on pose-space sample sets that are evaluated against individual sensor measurements. While these methods can work effectively, they often provide limited mechanisms to control the amount of hypotheses based on their similarity. Furthermore, they do not explicitly use associations to create or remove these hypotheses. We propose a global localization strategy that allows a mobile robot to localize using explicit symbolic associations with annotated geometric features. The feature measurements are first combined locally to form a consistent local feature map that is accurate in the vicinity of the robot. Based on this local map, an association tree is maintained that pairs local map features with global map features. The leaves of the tree represent distinct hypotheses on the data associations that allow for globally unmapped features appearing in the local map. We propose a registration step to check if an association hypothesis is supported. Our implementation considers a robot equipped with a 2D LiDAR and we compare the proposed method to a particle filter. We show that maintaining a smaller set of data association hypotheses results in better performance and explainability of the robot’s assumptions, as well as allowing more control over hypothesis bookkeeping. We provide experimental evaluations with a physical robot in a real environment using an annotated geometric building model that contains only the static part of the indoor scene. The result shows that our method outperforms a particle filter implementation in most cases by using fewer hypotheses with more descriptive power.</p
    corecore