76,892 research outputs found

    Using causal models to distinguish between neurogenesis-dependent and -independent effects on behaviour

    Get PDF
    There has been a substantial amount of research on the relationship between hippocampal neurogenesis and behaviour over the past fifteen years, but the causal role that new neurons have on cognitive and affective behavioural tasks is still far from clear. This is partly due to the difficulty of manipulating levels of neurogenesis without inducing off-target effects, which might also influence behaviour. In addition, the analytical methods typically used do not directly test whether neurogenesis mediates the effect of an intervention on behaviour. Previous studies may have incorrectly attributed changes in behavioural performance to neurogenesis because the role of known (or unknown) neurogenesis-independent mechanisms were not formally taken into consideration during the analysis. Causal models can tease apart complex causal relationships and were used to demonstrate that the effect of exercise on pattern separation is via neurogenesis-independent mechanisms. Many studies in the neurogenesis literature would benefit from the use of statistical methods that can separate neurogenesis-dependent from neurogenesis-independent effects on behaviour

    Modeling Reveals the Dependence of Hippocampal Neurogenesis Radiosensitivity on Age and Strain of Rats

    Get PDF
    Cognitive dysfunction following radiation treatment for brain cancers in both children and adults have been correlated to impairment of neurogenesis in the hippocampal dentate gyrus. Various species and strains of rodent models have been used to study radiation-induced changes in neurogenesis and these investigations have utilized only a limited number of doses, dose-fractions, age and time after exposures conditions. In this paper, we have extended our previous mathematical model of radiation-induced hippocampal neurogenesis impairment of C57BL/6 mice to delineate the time, age, and dose dependent alterations in neurogenesis of a diverse strain of rats. To the best of our knowledge, this is the first predictive mathematical model to be published about hippocampal neurogenesis impairment for a variety of rat strains after acute or fractionated exposures to low linear energy transfer (low LET) radiation, such as X-rays and γ-rays, which are conventionally used in cancer radiation therapy. We considered four compartments to model hippocampal neurogenesis and its impairment following radiation exposures. Compartments include: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN), and (4) glioblasts (GB). Additional consideration of dose and time after irradiation dependence of microglial activation and a possible shift of NSC proliferation from neurogenesis to gliogenesis at higher doses is established. Using a system of non-linear ordinary differential equations (ODEs), characterization of rat strain and age-related dynamics of hippocampal neurogenesis for unirradiated and irradiated conditions is developed. The model is augmented with the description of feedback regulation on early and late neuronal proliferation following radiation exposure. Predictions for dose-fraction regimes compared to acute radiation exposures, along with the dependence of neurogenesis sensitivity to radiation on age and strain of rats are discussed. A major result of this work is predictions of the rat strain and age dependent differences in radiation sensitivity and sub-lethal damage repair that can be used for predictions for arbitrary dose and dose-fractionation schedules

    Quantifying the behavioural relevance of hippocampal neurogenesis

    Full text link
    Few studies that examine the neurogenesis--behaviour relationship formally establish covariation between neurogenesis and behaviour or rule out competing explanations. The behavioural relevance of neurogenesis might therefore be overestimated if other mechanisms account for some, or even all, of the experimental effects. A systematic review of the literature was conducted and the data reanalysed using causal mediation analysis, which can estimate the behavioural contribution of new hippocampal neurons separately from other mechanisms that might be operating. Results from eleven eligible individual studies were then combined in a meta-analysis to increase precision (representing data from 215 animals) and showed that neurogenesis made a negligible contribution to behaviour (standarised effect = 0.15; 95% CI = -0.04 to 0.34; p = 0.128); other mechanisms accounted for the majority of experimental effects (standardised effect = 1.06; 95% CI = 0.74 to 1.38; p = 1.7 ×10−11\times 10^{-11}).Comment: To be published in PLoS ON

    Tet2 Rescues Age-Related Regenerative Decline and Enhances Cognitive Function in the Adult Mouse Brain.

    Get PDF
    Restoring adult stem cell function provides an exciting approach for rejuvenating the aging brain. However, molecular mechanisms mediating neurogenic rejuvenation remain elusive. Here we report that the enzyme ten eleven translocation methylcytosine dioxygenase 2 (Tet2), which catalyzes the production of 5-hydroxymethylcytosine (5hmC), rescues age-related decline in adult neurogenesis and enhances cognition in mice. We detected a decrease in Tet2 expression and 5hmC levels in the aged hippocampus associated with adult neurogenesis. Mimicking an aged condition in young adults by abrogating Tet2 expression within the hippocampal neurogenic niche, or adult neural stem cells, decreased neurogenesis and impaired learning and memory. In a heterochronic parabiosis rejuvenation model, hippocampal Tet2 expression was restored. Overexpressing Tet2 in the hippocampal neurogenic niche of mature adults increased 5hmC associated with neurogenic processes, offset the precipitous age-related decline in neurogenesis, and enhanced learning and memory. Our data identify Tet2 as a key molecular mediator of neurogenic rejuvenation

    Exploring adult hippocampal neurogenesis using optogenetics

    Get PDF
    In the 1980s, it was widely accepted that new neurons are continuously generated in the dentate gyrus of the mammalian hippocampus. Since its acceptance, researchers have employed various techniques and behavioral paradigms to study the proliferation, differentiation, and functional role of adult-born neurons. This literature thesis aims to discuss how optogenetics is able to overcome the limitations of past techniques and provide the field with new insights into the functional role of neurogenesis. We will review the current knowledge on both adult hippocampal neurogenesis and optogenetics, present representative studies using optogenetics to investigate neurogenesis and discuss potential limitations and concerns involved in using optogenetics

    Reduction of adult hippocampal neurogenesis modifies brain functional connectivity and enhances cocaine-seeking in mice

    Get PDF
    Recently, adult hippocampal neurogenesis has been proposed as a putative neuroplastic mechanism involved in those behavioural processes. In this work, we studied the effect of the inhibition of adult hippocampal neurogenesis using the DNA alkylating agent temozolomide (TMZ), in cocaine-induced conditioned place preference (CPP) behaviour. In a first experiment, we investigated both CPP acquisition/expression and the functional brain circuits underlying CPP expression in control and neurogenesis-reduced conditions by analysing c-Fos immunoreactivity (c-Fos IR) in hippocampal and extrahippocampal addiction-related areas. A second experiment was designed to study the involvement of adult-born neurons in the extinction and cocaine-induced reinstatement of drug-seeking in the CPP model. We performed two independent studies where adult hippocampal neurogenesis was inhibited either before or after the CPP was acquired. Our results showed that TMZ treatment had no effect on the acquisition of the cocaine-induced CPP, but c-Fos IR associated to the test trial (CPP expression) revealed an increased activity in some of the analysed brain areas in the CPP-TMZ mice. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain network associated with CPP expression. However, mice with reduced neurogenesis showed an alternative brain circuit. The results of the second experiment revealed that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug seeking behaviour. However, when neurogenesis was inhibited after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that the role of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition.Universidad de Málaga. Andalucía Tech, Campus de Excelencia Internacional. Spanish Ministry of Economy and Competitiveness (PSI2013-44901-P to L.J.S.; Subprograma RETICS Red de Trastornos Adictivos RD12/0028/0001, to F.R.F.). Author E.C-O. holds a ‘Sara Borrell’ research contract from the Spanish Carlos III Health Institute, Spanish Ministry of Economy and Competitiviness (grant number CD12/00455). Author D.L.G-M. holds a ‘FPU’ grant from the Spanish Ministry of Education, Culture and Sports (grant number FPU13/04819)
    • …
    corecore