63,576 research outputs found

    The consequences of nuclear transfer for mammalian foetal development and offspring survival : a mitochondrial DNA perspective

    Get PDF
    Review of the articleThe introduction of nuclear transfer (NT) and other technologies that involve embryo reconstruction require us to reinvestigate patterns of mitochondrial DNA (mtDNA) transmission, transcription and replication. MtDNA is a 16.6 kb genome located within each mitochondrion. The number of mitochondria and mtDNA copies per organelle is specific to each cell type. MtDNA is normally transmitted through the oocyte to the offspring. However, reconstructed oocytes often transmit both recipient oocyte mtDNA and mtDNA associated with the donor nucleus. We argue that the transmission of two populations of mtDNA may have implications for offspring survival as only one allele might be actively transcribed. This could result in the offspring phenotypically exhibiting mtDNA depletion-type syndromes. A similar occurrence could arise when nucleo-cytoplasmic interactions fail to regulate mtDNA transcription and replication, especially as the initiation of mtDNA replication post-implantation is a key developmental event. Furthermore, failure of the donor somatic nucleus to be reprogrammed could result in the early initiation of replication and the loss of cellular mtDNA specificity. We suggest investigations should be conducted to enhance our understanding of nucleo-cytoplasmic interactions in order to improve NT efficiency

    The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates

    Get PDF
    In most species mitochondrial DNA (mtDNA) is inherited maternally in an apparently clonal fashion, although how this is achieved remains uncertain. Population genetic studies show not only that individuals can harbor more than one type of mtDNA (heteroplasmy) but that heteroplasmy is common and widespread across a diversity of taxa. Females harboring a mixture of mtDNAs may transmit varying proportions of each mtDNA type (haplotype) to their offspring. However, mtDNA variants are also observed to segregate rapidly between generations despite the high mtDNA copy number in the oocyte, which suggests a genetic bottleneck acts during mtDNA transmission. Understanding the size and timing of this bottleneck is important for interpreting population genetic relationships and for predicting the inheritance of mtDNA based disease, but despite its importance the underlying mechanisms remain unclear. Empirical studies, restricted to mice, have shown that the mtDNA bottleneck could act either at embryogenesis, oogenesis or both. To investigate whether the size and timing of the mitochondrial bottleneck is conserved between distant vertebrates, we measured the genetic variance in mtDNA heteroplasmy at three developmental stages (female, ova and fry) in chinook salmon and applied a new mathematical model to estimate the number of segregating units (N(e)) of the mitochondrial bottleneck between each stage. Using these data we estimate values for mtDNA Ne of 88.3 for oogenesis, and 80.3 for embryogenesis. Our results confirm the presence of a mitochondrial bottleneck in fish, and show that segregation of mtDNA variation is effectively complete by the end of oogenesis. Considering the extensive differences in reproductive physiology between fish and mammals, our results suggest the mechanism underlying the mtDNA bottleneck is conserved in these distant vertebrates both in terms of it magnitude and timing. This finding may lead to improvements in our understanding of mitochondrial disorders and population interpretations using mtDNA data

    Age-related mitochondrial DNA depletion and the impact on pancreatic beta cell function

    Get PDF
    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes

    Clinicoprognostical features of endometrial cancer patients with somatic mtDNA mutations

    Get PDF
    Somatic mitochondrial DNA (mtDNA) mutations have been found in a subset of endometrial cancers (EC) from different populations. We have investigated the relationship between mtDNA changes and clinical and pathological variables of women affected by EC. mtDNA mutations were detected both in early (3/32; 9%) and in advanced (1/8; 12%) stages of uterine tumors. However, patients carrying the mtDNA mutations or the normal mtDNA sequence had indistinguishable clinicopathological data, including age, clinical stage, histological grade and type or depth of myometrial invasion. It is noteworthy that mtDNA mutations were not detected in hyperplastic endometrial tissues or in ECs coexisting with hyperplasia, nor in a single case of endometrial stromal sarcoma. LOH at the tumor suppressor genes RB1 and TP53 as well as p16INK4A alterations (LOH, gene deletion) were found in tumors carrying mtDNA mutations. These results suggest that somatic mtDNA mutations are detected in a subset of ECs, although they are unrelated to clinicopathological variables of cancer

    Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism

    Get PDF
    Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian computation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNA turnover, meaning that the debated exact magnitude of mtDNA copy number depletion is flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of this model. We analytically solve a mathematical description of this mechanism, computing probabilities of mtDNA disease onset, efficacy of clinical sampling strategies, and effects of potential dynamic interventions, thus developing a quantitative and experimentally-supported stochastic theory of the bottleneck.Comment: Main text: 14 pages, 5 figures; Supplement: 17 pages, 4 figures; Total: 31 pages, 9 figure

    Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions

    Get PDF
    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error

    Transmitochondrial embryonic stem cells containing pathogenic mtDNA mutations are compromised in neuronal differentiation

    Get PDF
    Objectives:  Defects of the mitochondrial genome (mtDNA) cause a series of rare, mainly neurological disorders. In addition, they have been implicated in more common forms of movement disorders, dementia and the ageing process. In order to try to model neuronal dysfunction associated with mitochondrial disease, we have attempted to establish a series of transmitochondrial mouse embryonic stem cells harbouring pathogenic mtDNA mutations. Materials and methods: Transmitochondrial embryonic stem cell cybrids were generated by fusion of cytoplasts carrying a variety of mtDNA mutations, into embryonic stem cells that had been pretreated with rhodamine 6G, to prevent transmission of endogenous mtDNA. Cybrids were differentiated into neurons and assessed for efficiency of differentiation and electrophysiological function. Results:  Neuronal differentiation could occur, as indicated by expression of neuronal markers. Differentiation was impaired in embryonic stem cells carrying mtDNA mutations that caused severe biochemical deficiency. Electrophysiological tests showed evidence of synaptic activity in differentiated neurons carrying non-pathogenic mtDNA mutations or in those that caused a mild defect of respiratory activity. Again, however, neurons carrying mtDNA mutations that resulted in severe biochemical deficiency had marked reduction in post-synaptic events. Conclusions:  Differentiated neurons carrying severely pathogenic mtDNA defects can provide a useful model for understanding how such mutations can cause neuronal dysfunction
    corecore