132,883 research outputs found

    Role of differentially expressed microRNA-139-5p in the regulation of phenotypic internal anal sphincter smooth muscle tone.

    Get PDF
    The present study focused on the role of microRNA-139-5p (miRNA-139-5p) in the regulation of basal tone in internal anal sphincter (IAS). Applying genome-wide miRNA microarrays on the phenotypically distinct smooth muscle cells (SMCs) within the rat anorectrum, we identified miRNA-139-5p as differentially expressed RNA repressor with highest expression in the purely phasic smooth muscle of anococcygeus (ASM) vs. the truly tonic smooth muscle of IAS. This pattern of miRNA-139-5p expression, previously shown to target ROCK2, was validated by target prediction using ingenuity pathway (IPA) and by qPCR analyses. Immunoblotting, immunocytochemistry (ICC), and functional assays using IAS tissues and cells subjected to overexpression/knockdown of miRNA-139-5p confirmed the inverse relationship between miRNA-139-5p and ROCK2 expressions/IAS tone. Overexpression of miRNA-139-5p caused a decrease, while knockdown by anti-miRNA-139-5p caused an increase in the IAS tone; these tissue contractile responses were confirmed by single-cell contraction using magnetic twisting cytometry (MTC). These findings suggest miRNA-139-5p is capable of significantly influencing the phenotypic tonicity in smooth muscle via ROCK2: a lack of tone in ASM may be associated with the suppression of ROCK2 by high expression of miRNA-139-5p, whereas basal IAS tone may be associated with the persistence of ROCK2 due to low expression of miRNA-139-5p

    BMP Signaling Goes Posttranscriptional in a microRNA Sort of Way

    Get PDF
    Aberrant microRNA (miRNA) expression correlates with human diseases such as cardiac disorders and cancer. Treatment of such disorders using miRNA-targeted therapeutics requires a thorough understanding of miRNA regulation in vivo. A recent paper in Nature by Davis et al. expands our understanding of miRNA biogenesis and maturation, elucidating a mechanism by which extracellular signaling directs cell differentiation via posttranscriptional regulation of miRNA expression

    Increased expression of circulating miRNA-93 in women with polycystic ovary syndrome may represent a novel, non-invasive biomarker for diagnosis

    Get PDF
    MicroRNAs (miRNA) are a novel class of small noncoding single-stranded RNA molecules that regulate gene expression. There is increasing evidence of their importance in polycystic ovary syndrome (PCOS). The objective was to determine if miRNA-93 and miRNA-223 are differentially expressed in the circulation of women with PCOS compared to age matched women. A case–control study comparing women with PCOS (n = 25) to age and weight matched controls (n = 24) without PCOS was performed. MiRNA-93 and miRNA-223 were determined by total RNA reverse transcription. Both miRNA-93 and miRNA-223 were significantly increased relative to the control group (p < 0.01, p = 0.029 respectively). In both groups there was no correlation of either miRNA-93 or miRNA-223 with insulin, HOMA-IR, HOMA-β or testosterone levels. The area under the receiver operator characteristic curve for miR-223 and miR-93 was 0.66 and 0.72 respectively, suggesting miR-93 is a more efficient biomarker than miR-223 for diagnosis of PCOS. The combination of the two miRNAs together, tested using multiple logistic regression analysis, did not improve the diagnostic potential. In conclusion, circulating miRNA-93 and miRNA-223 were higher in women with PCOS compared to age and weight matched controls independent of insulin resistance and testosterone levels, and miR-93 may represent a novel diagnostic biomarker for PCOS

    Narrating and negotiating the repressed city: representations of Prague in Jiří Weil's work

    Get PDF
    No abstract available

    The singular world of singular cardinals

    Get PDF
    The article uses two examples to explore the statement that, contrary to the common wisdom, the properties of singular cardinals are actually more intuitive than those of the regular ones

    MicroRNA-29 family expression and its relation to antiviral immune response and viro-immunological markers in HIV-1-infected patients

    Get PDF
    Abstract BACKGROUND: Several in vitro studies suggested the microRNA-29 (miRNA-29) family is involved in regulating HIV-1 and modulating the expression of interleukin (IL)-32, an anti-HIV-1 cytokine. METHODS: To investigate the contribution of the miRNA-29 family to HIV-1 infection in vivo, we compared miRNA-29 expression in PBMC collected from 58 HIV-1-infected patients, naïve for antiretroviral therapy, and 21 gender- and age-matched HIV-1 seronegative healthy donors, using RT-Taqman assays. The relation between miRNA-29 levels and HIV-1 viro-immunological markers and the activation rate of antiviral immune response were also evaluated. In addition, we profiled miRNA-29 expression in CD4+ T lymphocytes and CD14+ monocytes collected from 5 antiretroviral treated HIV-1 infected patients. RESULTS: miRNA-29b levels were higher in HIV-1-infected patients than in the control group (p < 0.001). There were no correlations with either HIV-1 RNA levels or CD4+ T count, whereas a significant correlation was found between miRNA-29-a/c levels and integrated HIV-1 DNA (miRNA-29a: p = 0.009, r = -0.448; miRNA-29c: p = 0.029; r = -0.381). When the HIV-1-infected patients were grouped on the basis of their plasma HIV-1 RNA and CD4+ T cell count, we also found that patients expressing the lowest levels of miRNA-29c showed high viraemia, low CD4+ T cell count and high levels of integrated HIV-1 DNA. Moreover, miRNA-29b levels were correlated with those of IL-32nonα (p = 0.028; r = -0.298). Patients expressing higher levels of miRNA-29b showed lower levels of MxA, an interferon-stimulated gene, also induced by IL-32 (p = 0.006 r = -0.397). Lastly, we found that CD4+ T lymphocytes and CD14+ monocytes shared similar miRNA-29a/b/c expression patterns but the amount of miRNA-29a/b/c, IL-32 isoforms and MxA were highly variable in these two cellular subsets. CONCLUSIONS: The miRNA-29 family could influence the clinical progression of HIV-1 infection, the HIV-1 proviral load and the innate immune response against HIV-1

    Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration.

    Get PDF
    BACKGROUND: Adaptation to chronic ethanol (EtOH) treatment of rats results in a changed functional state of the liver and greatly inhibits its regenerative ability, which may contribute to the progression of alcoholic liver disease. METHODS: In this study, we investigated the effect of chronic EtOH intake on hepatic microRNA (miRNA) expression in male Sprague-Dawley rats during the initial 24 hours of liver regeneration following 70% partial hepatectomy (PHx) using miRNA microarrays. miRNA expression during adaptation to EtOH was investigated using RT-qPCR. Nuclear factor kappa B (NFκB) binding at target miRNA promoters was investigated with chromatin immunoprecipitation. RESULTS: Unsupervised clustering of miRNA expression profiles suggested that miRNA expression was more affected by chronic EtOH feeding than by the acute challenge of liver regeneration after PHx. Several miRNAs that were significantly altered by chronic EtOH feeding, including miR-34a, miR-103, miR-107, and miR-122 have been reported to play a role in regulating hepatic metabolism and the onset of these miRNA changes occurred gradually during the time course of EtOH feeding. Chronic EtOH feeding also altered the dynamic miRNA profile during liver regeneration. Promoter analysis predicted a role for NFκB in the immediate-early miRNA response to PHx. NFκB binding at target miRNA promoters in the chronic EtOH-fed group was significantly altered and these changes directly correlated with the observed expression dynamics of the target miRNA. CONCLUSIONS: Chronic EtOH consumption alters the hepatic miRNA expression profile such that the response of the metabolism-associated miRNAs occurs during long-term adaptation to EtOH rather than as an acute transient response to EtOH metabolism. Additionally, the dynamic miRNA program during liver regeneration in response to PHx is altered in the chronically EtOH-fed liver and these differences reflect, in part, differences in miRNA expression between the EtOH-adapted and control livers at the baseline state prior to PHx

    Translation efficiency is a determinant of the magnitude of miRNA-mediated repression

    Get PDF
    Abstract MicroRNAs are well known regulators of mRNA stability and translation. However, the magnitude of both translational repression and mRNA decay induced by miRNA binding varies greatly between miRNA targets. This can be the result of cis and trans factors that affect miRNA binding or action. We set out to address this issue by studying how various mRNA characteristics affect miRNA-mediated repression. Using a dual luciferase reporter system, we systematically analyzed the ability of selected mRNA elements to modulate miRNA-mediated repression. We found that changing the 3′UTR of a miRNA-targeted reporter modulates translational repression by affecting the translation efficiency. This 3′UTR dependent modulation can be further altered by changing the codon-optimality or 5′UTR of the luciferase reporter. We observed maximal repression with intermediate codon optimality and weak repression with very high or low codon optimality. Analysis of ribosome profiling and RNA-seq data for endogenous miRNA targets revealed translation efficiency as a key determinant of the magnitude of miRNA-mediated translational repression. Messages with high translation efficiency were more robustly repressed. Together our results reveal modulation of miRNA-mediated repression by characteristics and features of the 5′UTR, CDS and 3′UTR
    • …
    corecore