32,607 research outputs found

    Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides

    Get PDF
    This is the publisher’s final pdf. The published article is copyrighted by the Public Library of Science and can be found at: http://www.plosone.org/home.action.With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs

    Macroalgae and eelgrass mapping in Great Bay Estuary using AISA hyperspectral imagery

    Get PDF
    Increase in nitrogen concentration and declining eelgrass beds in Great Bay Estuary have been observed in the last decades. These two parameters are clear indicators of the impending problems for NH’s estuaries. The NH Department of Environmental Services (DES) in collaboration with the New Hampshire Estuaries Project (NHEP) adopted the assumption that eelgrass survival can be used as the water quality target for nutrient criteria development for NH’s estuaries. One of the hypotheses put forward regarding eelgrass decline is that a possible eutrophication response to nutrient increases in the Great Bay Estuary has been the proliferation of nuisance macroalgae, which has reduced eelgrass area in Great Bay Estuary. To test this hypothesis, mapping of eelgrass and nuisance macroalgae beds using hyperspectral imagery was suggested. A hyperspectral imagery was conducted by SpecTIR in August 2007 using an AISA Eagle sensor. The collected dataset was used to map eelgrass and nuisance macroalgae throughout the Great Bay Estuary. This report outlines the configured procedure for mapping the macroalgae and eelgrass beds using hyperspectral imagery. No ground truth measurements of eelgrass or macroalgae were collected as part of this project, although eelgrass ground truth data was collected as part of a separate project. Guidance from eelgrass and macroalgae experts was used for identifying training sets and evaluating the classification results. The results produced a comprehensive eelgrass and macroalgae map of the estuary. Three recommendations are suggested following the experience gained in this study: conducting ground truth measurements at the time of the HS survey, acquiring the current DEM model of Great Bay Estuary, and examining additional HS datasets with expert eelgrass and macroalgae guidance. These three issues can improve the classification results and allow more advanced applications, such as identification of macroalgae types

    Restoration of Oyster (Crassostrea virginica) Habitat for Multiple Estuarine Species Benefits

    Get PDF
    Increase in nitrogen concentration and declining eelgrass beds in Great Bay Estuary have been observed in the last decades. These two parameters are clear indicators of the impending problems for NH’s estuaries. The NH Department of Environmental Services (DES) in collaboration with the New Hampshire Estuaries Project (NHEP) adopted the assumption that eelgrass survival can be used as the water quality target for nutrient criteria development for NH’s estuaries. One of the hypotheses put forward regarding eelgrass decline is that a possible eutrophication response to nutrient increases in the Great Bay Estuary has been the proliferation of nuisance macroalgae, which has reduced eelgrass area in Great Bay Estuary. To test this hypothesis, mapping of eelgrass and nuisance macroalgae beds using hyperspectral imagery was suggested. A hyperspectral imagery was conducted by SpecTIR in August 2007 using an AISA Eagle sensor. The collected dataset was used to map eelgrass and nuisance macroalgae throughout the Great Bay Estuary. This report outlines the configured procedure for mapping the macroalgae and eelgrass beds using hyperspectral imagery. No ground truth measurements of eelgrass or macroalgae were collected as part of this project, although eelgrass ground truth data was collected as part of a separate project. Guidance from eelgrass and macroalgae experts was used for identifying training sets and evaluating the classification results. The results produced a comprehensive eelgrass and macroalgae map of the estuary. Three recommendations are suggested following the experience gained in this study: conducting ground truth measurements at the time of the HS survey, acquiring the current DEM model of Great Bay Estuary, and examining additional HS datasets with expert eelgrass and macroalgae guidance. These three issues can improve the classification results and allow more advanced applications, such as identification of macroalgae types

    Macroalgae contribute to the diet of Patella vulgata from contrasting conditions of latitude and wave exposure in the UK

    Get PDF
    Analysis of gut contents and stable isotope composition of intertidal limpets (Patella vulgata) showed a major contribution of macroalgae to their diet, along with microalgae and invertebrates. Specimens were collected in areas with limited access to attached macroalgae, suggesting a major dietary component of drift algae. Gut contents of 480 animals from 2 moderately wave exposed and 2 sheltered rocky shores in each of 2 regions: western Scotland (55–56°N) and southwest England (50°N), were analysed in 2 years (n = 30 per site per year). The abundance of microalgae, macroalgae and invertebrates within the guts was quantified using categorical abundance scales. Gut content composition was compared among regions and wave exposure conditions, showing that the diet of P. vulgata changes with both wave exposure and latitude. Microalgae were most abundant in limpet gut contents in animals from southwest sites, whilst leathery/corticated macroalgae were more prevalent and abundant in limpets from sheltered and northern sites. P. vulgata appears to have a more flexible diet than previously appreciated and these keystone grazers consume not only microalgae, but also large quantities of macroalgae and small invertebrates. To date, limpet grazing studies have focussed on their role in controlling recruitment of macroalgae by feeding on microscopic propagules and germlings. Consumption of adult algae suggests P. vulgata may also directly control the biomass of attached macroalgae on the shore, whilst consumption of drift algae indicates the species may play important roles in coupling subtidal and intertidal production

    Macroalgae and Eelgrass Mapping in Great Bay Estuary Using AISA Hyperspectral Imagery.

    Get PDF
    Results Increases in nitrogen concentration and declining eelgrass beds in Great Bay Estuary have been observed in the last decades. These two parameters are clear indicators of the impending eutrophication for New Hampshire’s estuaries. The NH Department of Environmental Services (DES) in collaboration with the Piscataqua Region Estuaries Partnership adopted the assumption that eelgrass survival can be used as the target for establishing numeric water quality criteria for nutrients in NH’s estuaries. One of the hypotheses put forward regarding eelgrass decline is that an eutrophication response to nutrient increases in the Great Bay Estuary has been the proliferation of nuisance macroalgae, which has reduced eelgrass area in Great Bay Estuary. To determine the extent of this effect, mapping of eelgrass and nuisance macroalgae beds using hyperspectral imagery was suggested. A hyperspectral image was made by SpecTIR in August 2007 using an AISA Eagle sensor. The collected dataset was then used to map eelgrass and nuisance macroalgae throughout the Great Bay Estuary. Here we outline the procedure for mapping the macroalgae and eelgrass beds. Hyperspectral imagery was effective where known spectral signatures could be easily identified. Comprehensive eelgrass and macroalgae maps of the estuary could only be produced by combining hyperspectral imagery with ground-truth information and expert opinion. Macroalgae was predominantly located in areas where eelgrass formerly existed. Macroalgae mats have now replaced nearly 9% of the area formerly occupied by eelgrass in Great Bay

    Results of 2013 Macroalgal Monitoring and Recommendations for Future Monitoring in Great Bay Estuary, New Hampshire

    Get PDF
    The recently designated nitrogen impairment and reports of elevated macroalgal growth in Great Bay Estuary indicate ecological imbalance. However, reversing the Estuary’s ecological decline will require commitment of considerable resources and is complicated by the variety of sources that deliver nitrogen to the Estuary and the intermittent nature of historic macroalgal monitoring. To advance our understanding of the macroalgal and nitrogen dynamics of the Estuary, data were collected via three approaches: 1) assessing plant cover and biomass along transects; 2) assessing plant cover at randomly selected points; and 3) comparing the nitrogen isotope ratios of macroalgae collected from different habitats. The results offer insight into changes in macroalgal abundance and species composition and the relative importance of various nitrogen sources to macroalgae in Great Bay. Overall, our results corroborate the findings of increasing macroalgal blooms in previous studies and suggests plausible directions for a long-term macroalgal monitoring program

    Great Bay Estuary Macroalgae Monitoring Program for 2016 Quality Assurance Project Plan

    Get PDF

    Assessing the impacts of nonindigenous marine macroalgae: an update of current knowledge

    Get PDF
    Nonindigenous marine species continue to be one of the foremost threats to marine biodiversity. As an update to a 2007 review of the impacts of introduced macroalgae, we assessed 142 additional publications to describe species’ impacts as well as to appraise information on the mechanisms of impact. Only 10% of the currently known nonindigenous macroalgal species were subjects of ecological impact studies, with changed community composition as the most commonly reported effect. Economic impacts were rarely published. Recent research has focused on the impacts of introduced macroalgal assemblages: red algal introductions to the Hawaiian Islands and turf algae in the Mediterranean. Several general issues were apparent. First, many publications included nonsignificant results of statistical analyses but did not report associated power. As many of the studies also had low effect and sample size, the potential for type II errors is considerable. Second, there was no widely accepted framework to categorize and compare impacts between studies. Information in this updated review was still too sparse to identify general patterns and mechanisms of impact. This is a critical knowledge gap as rates of introductions and hence impacts of nonindigenous macroalgae are expected to accelerate with climate change and increasing global trade connectivity
    corecore