1,480 research outputs found

    Machine Learning-Based Anomaly Detection in Cloud Virtual Machine Resource Usage

    Get PDF
    Anomaly detection is an important activity in cloud computing systems because it aids in the identification of odd behaviours or actions that may result in software glitch, security breaches, and performance difficulties. Detecting aberrant resource utilization trends in virtual machines is a typical application of anomaly detection in cloud computing (VMs). Currently, the most serious cyber threat is distributed denial-of-service attacks. The afflicted server\u27s resources and internet traffic resources, such as bandwidth and buffer size, are slowed down by restricting the server\u27s capacity to give resources to legitimate customers. To recognize attacks and common occurrences, machine learning techniques such as Quadratic Support Vector Machines (QSVM), Random Forest, and neural network models such as MLP and Autoencoders are employed. Various machine learning algorithms are used on the optimised NSL-KDD dataset to provide an efficient and accurate predictor of network intrusions. In this research, we propose a neural network based model and experiment on various central and spiral rearrangements of the features for distinguishing between different types of attacks and support our approach of better preservation of feature structure with image representations. The results are analysed and compared to existing models and prior research. The outcomes of this study have practical implications for improving the security and performance of cloud computing systems, specifically in the area of identifying and mitigating network intrusions

    The Need of an Optimal QoS Repository and Assessment Framework in Forming a Trusted Relationship in Cloud: A Systematic Review

    Full text link
    © 2017 IEEE. Due to the cost-effectiveness and scalable features of the cloud the demand of its services is increasing every next day. Quality of Service (QOS) is one of the crucial factor in forming a viable Service Level Agreement (SLA) between a consumer and the provider that enable them to establish and maintain a trusted relationship with each other. SLA identifies and depicts the service requirements of the user and the level of service promised by provider. Availability of enormous service solutions is troublesome for cloud users in selecting the right service provider both in terms of price and the degree of promised services. On the other end a service provider need a centralized and reliable QoS repository and assessment framework that help them in offering an optimal amount of marginal resources to requested consumer. Although there are number of existing literatures that assist the interaction parties to achieve their desired goal in some way, however, there are still many gaps that need to be filled for establishing and maintaining a trusted relationship between them. In this paper we tried to identify all those gaps that is necessary for a trusted relationship between a service provider and service consumer. The aim of this research is to present an overview of the existing literature and compare them based on different criteria such as QoS integration, QoS repository, QoS filtering, trusted relationship and an SLA

    On the Implementation of a regional X-bandweather radar network

    Get PDF
    In the last few years, the number of worldwide operational X-band weather radars has rapidly been growing, thanks to an established technology that offers reliability, high performance, and reduced efforts and costs for installation and maintenance, with respect to the more widespread C- and S-band systems. X-band radars are particularly suitable for nowcasting activities, as those operated by the LaMMA (Laboratory of Monitoring and Environmental Modelling for the sustainable development) Consortium in the framework of its institutional duties of operational meteorological surveillance. In fact, they have the capability to monitor precipitation, resolving very local scales, with good spatial and temporal details, although with a reduced scanning range. The Consortium has recently installed a small network of X-band weather radars that partially overlaps and completes the existing national radar network over the north Tyrrhenian area. This paper describes the implementation of this regional network, detailing the aspects related with the radar signal processing chain that provides the final reflectivity composite, starting from the acquisition of the signal power data. The network performances are then qualitatively assessed for three case studies characterised by different precipitation regimes and different seasons. Results are satisfactory especially during intense precipitations, particularly regarding what concerns their spatial and temporal characterisation

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Guest Editorial: Special issue on data analytics and machine learning for network and service management-Part II

    Get PDF
    Network and Service analytics can harness the immense stream of operational data from clouds, to services, to social and communication networks. In the era of big data and connected devices of all varieties, analytics and machine learning have found ways to improve reliability, configuration, performance, fault and security management. In particular, we see a growing trend towards using machine learning, artificial intelligence and data analytics to improve operations and management of information technology services, systems and networks
    • …
    corecore