158 research outputs found

    Peer coaching through mHealth targeting physical activity in people with Parkinson disease: feasibility study

    Get PDF
    BACKGROUND: Long-term engagement in exercise and physical activity mitigates the progression of disability and increases quality of life in people with Parkinson disease (PD). Despite this, the vast majority of individuals with PD are sedentary. There is a critical need for a feasible, safe, acceptable, and effective method to assist those with PD to engage in active lifestyles. Peer coaching through mobile health (mHealth) may be a viable approach. OBJECTIVE: The purpose of this study was to develop a PD-specific peer coach training program and a remote peer-mentored walking program using mHealth technology with the goal of increasing physical activity in persons with PD. We set out to examine the feasibility, safety, and acceptability of the programs along with preliminary evidence of individual-level changes in walking activity, self-efficacy, and disability in the peer mentees. METHODS: A peer coach training program and a remote peer-mentored walking program using mHealth was developed and tested in 10 individuals with PD. We matched physically active persons with PD (peer coaches) with sedentary persons with PD (peer mentees), resulting in 5 dyads. Using both Web-based and in-person delivery methods, we trained the peer coaches in basic knowledge of PD, exercise, active listening, and motivational interviewing. Peer coaches and mentees wore FitBit Zip activity trackers and participated in daily walking over 8 weeks. Peer dyads interacted daily via the FitBit friends mobile app and weekly via telephone calls. Feasibility was determined by examining recruitment, participation, and retention rates. Safety was assessed by monitoring adverse events during the study period. Acceptability was assessed via satisfaction surveys. Individual-level changes in physical activity were examined relative to clinically important differences. RESULTS: Four out of the 5 peer pairs used the FitBit activity tracker and friends function without difficulty. A total of 4 of the 5 pairs completed the 8 weekly phone conversations. There were no adverse events over the course of the study. All peer coaches were "satisfied" or "very satisfied" with the training program, and all participants were "satisfied" or "very satisfied" with the peer-mentored walking program. All participants would recommend this program to others with PD. Increases in average steps per day exceeding the clinically important difference occurred in 4 out of the 5 mentees. CONCLUSIONS: Remote peer coaching using mHealth is feasible, safe, and acceptable for persons with PD. Peer coaching using mHealth technology may be a viable method to increase physical activity in individuals with PD. Larger controlled trials are necessary to examine the effectiveness of this approach.This study is supported by Boston Roybal Center for Active Lifestyle Interventions (RALI Boston), Grant #P30 AG048785, and the American Parkinson Disease Association, Massachusetts chapter. The authors would like to thank Nicole Sullivan, SOT, for her assistance with data management and data collection and Nick Wendel, DPT, for his assistance with data collection. Additionally, the authors would like to thank the participants in this study for their time, effort, and insights. (P30 AG048785 - Boston Roybal Center for Active Lifestyle Interventions (RALI Boston); American Parkinson Disease Association, Massachusetts chapter)Accepted manuscrip

    A comparison of video conferencing and in-person health coaching approaches in combination with mHealth devices on weight loss, physical activity, and glycemic control

    Get PDF
    Background: Compare health coaching efficacy on weight loss, physical activity, and glycemic control between individualized video conferencing (VC), in-person (IP) and control (CG) groups of adults with high BMI. Methods: Thirty adults (BMI≥30 kg/m2) were randomly assigned to create three groups of 10 members each. Participants received a wireless accelerometer watch and weight scale to sync with their personal smartphones and downloaded apps. Participants assigned to VC and IP received weekly health coaching individualized based on data uploaded over the 12-wk intervention. Steps/day and weight loss were analyzed via analyses of covariance (ANCOVA). Between-group ANOVAs analyzed post-intervention changes in weight (kg), glucose, HbA1c, and HOMA-IR. Results: Weight loss (8.23±4.5kg; 7.7%) was greater (pp≤.05); VC consistently had the higher step/day averages. No between-group differences were found for any glycemic control markers. Conclusion: Our innovative, multidisciplinary, telemedicine health coaching delivered through video conferencing led to favorable changes in weight loss, physical activity, and HOMA-IR that surpassed changes when health coaching was delivered in person or was absent. Future studies using video conferencing to investigate health coaching delivered in group and individualized formats and for other population subgroups are needed as are studies investigating the impact of weight loss on other health outcomes (e.g. lipid profile, glycemic control, and inflammatory markers)

    Technology in Parkinson's disease:challenges and opportunities

    Get PDF
    The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capture of more and previously inaccessible phenomena in Parkinson's disease (PD). However, more information has not translated into a greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include noncompatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (among vulnerable elderly patients in particular), and the gap between the "big data" acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms that enable multichannel data capture sensitive to the broad range of motor and nonmotor problems that characterize PD and are adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to (1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones, (2) enhance the tailoring of symptomatic therapy, (3) improve subgroup targeting of patients for future testing of disease-modifying treatments, and (4) identify objective biomarkers to improve the longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the task force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and the quality of life of individuals with PD. © 2016 International Parkinson and Movement Disorder Society

    Use of Mobile Apps for Self-care in People With Parkinson Disease: Systematic Review

    Get PDF
    Background: Self-care is essential for people with Parkinson disease (PD) to minimize their disability and adapt to alterations in physical abilities due to this progressive neurodegenerative disorder. With rapid developments in mobile technology, many health-related mobile apps for PD have been developed and used. However, research on mobile app-based self-care in PD is insufficient. Objective: This study aimed to explore the features and characteristics of mobile apps for self-care in people with PD. Methods: This study was performed sequentially according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. PubMed, Embase, Cumulative Index to Nursing and Allied Health Literature, Cochrane Library, Web of Science, and PsycINFO were searched in consultation with a librarian on June 8, 2021. We used keywords including "Parkinson disease" and "mobile." Results: A total of 17 studies were selected based on the inclusion criteria, including 3 randomized controlled trials and 14 observational studies or quasi-experimental studies. The use of mobile apps for self-care in people with PD focused on symptom monitoring, especially motor symptoms. Motor symptoms were objectively measured mainly through the sensors of smartphones or wearable devices and task performance. Nonmotor symptoms were monitored through task performance or self-reported questionnaires in mobile apps. Most existing studies have focused on clinical symptom assessment in people with PD, and there is a lack of studies focusing on symptom management. Conclusions: Mobile apps for people with PD have been developed and used, but strategies for self-management are insufficient. We recommend the development of mobile apps focused on self-care that can enhance symptom management and health promotion practices. Studies should also evaluate the effects of mobile apps on symptom improvement and quality of life in people with PD. Trial registration: PROSPERO International Prospective Register of Systematic Reviews CRD42021267374; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021267374.ope

    Methods of Usability Testing in the Development of eHealth Applications: A Scoping Review

    Get PDF
    Background The number of eHealth applications has exponentially increased in recent years, with over 325,000 health apps now available on all major app stores. This is in addition to other eHealth applications available on other platforms such as PC software, web sites and even gaming consoles. As with other digital applications, usability is one of the key factors in the successful implementation of eHealth apps. Reviews of the literature on empirical methods of usability testing in eHealth were last published in 2015. In the context of an exponentially increasing rate of App development year on year, an updated review is warranted. Objective To identify, explore, and summarize the current methods used in the usability testing of eHealth applications. Methods A scoping review was conducted on literature available from April 2014 up to October 2017. Four databases were searched. Literature was considered for inclusion if it was (1) focused on an eHealth application (which includes websites, PC software, smartphone and tablet applications), (2) provided information about usability of the application, (3) provided empirical results of the usability testing, (4) a full or short paper (not an abstract) published in English after March 2014. We then extracted data pertaining to the usability evaluation processes described in the selected studies. Results 133 articles met the inclusion criteria. The methods used for usability testing, in decreasing order of frequency were: questionnaires (n = 105), task completion (n = 57), ‘Think-Aloud’ (n = 45), interviews (n = 37), heuristic testing (n = 18) and focus groups (n = 13). Majority of the studies used one (n = 45) or two (n = 46) methods of testing. The rest used a combination of three (n = 30) or four (n = 12) methods of testing usability. None of the studies used automated mechanisms to test usability. The System Usability Scale (SUS) was the most frequently used questionnaire (n = 44). The ten most frequent health conditions or diseases where eHealth apps were being evaluated for usability were the following: mental health (n = 12), cancer (n = 10), nutrition (n = 10), child health (n = 9), diabetes (n = 9), telemedicine (n = 8), cardiovascular disease (n = 6), HIV (n = 4), health information systems (n = 4) and smoking (n = 4). Further iterations of the app were reported in a minority of the studies (n = 41). The use of the ‘Think-Aloud’ (Pearson Chi-squared test: χ2 = 11.15, p < 0.05) and heuristic walkthrough (Pearson Chi-squared test: χ2 = 4.48, p < 0.05) were significantly associated with at least one further iteration of the app being developed. Conclusion Although there has been an exponential increase in the number of eHealth apps, the number of studies that have been published that report the results of usability testing on these apps has not increased at an equivalent rate. The number of digital health applications that publish their usability evaluation results remains only a small fraction. Questionnaires are the most prevalent method of evaluating usability in eHealth applications, which provide an overall measure of usability but do not pinpoint the problems that need to be addressed. Qualitative methods may be more useful in this regard. The use of multiple evaluation methods has increased. Automated methods such as eye tracking have not gained traction in evaluating health apps. Further research is needed into which methods are best suited for the different types of eHealth applications, according to their target users and the health conditions being addressed.Background The number of eHealth applications has exponentially increased in recent years, with over 325,000 health apps now available on all major app stores. This is in addition to other eHealth applications available on other platforms such as PC software, web sites and even gaming consoles. As with other digital applications, usability is one of the key factors in the successful implementation of eHealth apps. Reviews of the literature on empirical methods of usability testing in eHealth were last published in 2015. In the context of an exponentially increasing rate of App development year on year, an updated review is warranted. Objective To identify, explore, and summarize the current methods used in the usability testing of eHealth applications. Methods A scoping review was conducted on literature available from April 2014 up to October 2017. Four databases were searched. Literature was considered for inclusion if it was (1) focused on an eHealth application (which includes websites, PC software, smartphone and tablet applications), (2) provided information about usability of the application, (3) provided empirical results of the usability testing, (4) a full or short paper (not an abstract) published in English after March 2014. We then extracted data pertaining to the usability evaluation processes described in the selected studies. Results 133 articles met the inclusion criteria. The methods used for usability testing, in decreasing order of frequency were: questionnaires (n = 105), task completion (n = 57), ‘Think-Aloud’ (n = 45), interviews (n = 37), heuristic testing (n = 18) and focus groups (n = 13). Majority of the studies used one (n = 45) or two (n = 46) methods of testing. The rest used a combination of three (n = 30) or four (n = 12) methods of testing usability. None of the studies used automated mechanisms to test usability. The System Usability Scale (SUS) was the most frequently used questionnaire (n = 44). The ten most frequent health conditions or diseases where eHealth apps were being evaluated for usability were the following: mental health (n = 12), cancer (n = 10), nutrition (n = 10), child health (n = 9), diabetes (n = 9), telemedicine (n = 8), cardiovascular disease (n = 6), HIV (n = 4), health information systems (n = 4) and smoking (n = 4). Further iterations of the app were reported in a minority of the studies (n = 41). The use of the ‘Think-Aloud’ (Pearson Chi-squared test: χ2 = 11.15, p < 0.05) and heuristic walkthrough (Pearson Chi-squared test: χ2 = 4.48, p < 0.05) were significantly associated with at least one further iteration of the app being developed. Conclusion Although there has been an exponential increase in the number of eHealth apps, the number of studies that have been published that report the results of usability testing on these apps has not increased at an equivalent rate. The number of digital health applications that publish their usability evaluation results remains only a small fraction. Questionnaires are the most prevalent method of evaluating usability in eHealth applications, which provide an overall measure of usability but do not pinpoint the problems that need to be addressed. Qualitative methods may be more useful in this regard. The use of multiple evaluation methods has increased. Automated methods such as eye tracking have not gained traction in evaluating health apps. Further research is needed into which methods are best suited for the different types of eHealth applications, according to their target users and the health conditions being addressed

    Smart and Pervasive Healthcare

    Get PDF
    Smart and pervasive healthcare aims at facilitating better healthcare access, provision, and delivery by overcoming spatial and temporal barriers. It represents a shift toward understanding what patients and clinicians really need when placed within a specific context, where traditional face-to-face encounters may not be possible or sufficient. As such, technological innovation is a necessary facilitating conduit. This book is a collection of chapters written by prominent researchers and academics worldwide that provide insights into the design and adoption of new platforms in smart and pervasive healthcare. With the COVID-19 pandemic necessitating changes to the traditional model of healthcare access and its delivery around the world, this book is a timely contribution
    corecore