516,747 research outputs found

    World Heritage site management : protecting a site in its landscape, a Maltese case-study

    Get PDF
    A seminar presented at the Forum UNESCO University and Heritage on protecting the megalithic temple site of Mnajdra on Malta. The seminar was held due to a violent vandalistic attack on the temple site which shocked and angered the wider community. This incident served to highlight some potentially serious shortcomings in implementation of the World Heritage Convention (WHC) on a local level, with particular reference to its intention to protect sites and landscapes of 'outstanding universal value'. This paper examines the response of the Maltese community and WHS management team to the incident.peer-reviewe

    Evolutionary Dynamics and Optimization: Neutral Networks as Model-Landscapes for RNA Secondary-Structure Folding-Landscapes

    Full text link
    We view the folding of RNA-sequences as a map that assigns a pattern of base pairings to each sequence, known as secondary structure. These preimages can be constructed as random graphs (i.e. the neutral networks associated to the structure ss). By interpreting the secondary structure as biological information we can formulate the so called Error Threshold of Shapes as an extension of Eigen's et al. concept of an error threshold in the single peak landscape. Analogue to the approach of Derrida & Peliti for a of the population on the neutral network. On the one hand this model of a single shape landscape allows the derivation of analytical results, on the other hand the concept gives rise to study various scenarios by means of simulations, e.g. the interaction of two different networks. It turns out that the intersection of two sets of compatible sequences (with respect to the pair of secondary structures) plays a key role in the search for ''fitter'' secondary structures.Comment: 20 pages, uuencoded compressed postscript-file, Proc. of ECAL '95 conference, to appear., email: chris @ imb-jena.d

    Predictability of evolutionary trajectories in fitness landscapes

    Get PDF
    Experimental studies on enzyme evolution show that only a small fraction of all possible mutation trajectories are accessible to evolution. However, these experiments deal with individual enzymes and explore a tiny part of the fitness landscape. We report an exhaustive analysis of fitness landscapes constructed with an off-lattice model of protein folding where fitness is equated with robustness to misfolding. This model mimics the essential features of the interactions between amino acids, is consistent with the key paradigms of protein folding and reproduces the universal distribution of evolutionary rates among orthologous proteins. We introduce mean path divergence as a quantitative measure of the degree to which the starting and ending points determine the path of evolution in fitness landscapes. Global measures of landscape roughness are good predictors of path divergence in all studied landscapes: the mean path divergence is greater in smooth landscapes than in rough ones. The model-derived and experimental landscapes are significantly smoother than random landscapes and resemble additive landscapes perturbed with moderate amounts of noise; thus, these landscapes are substantially robust to mutation. The model landscapes show a deficit of suboptimal peaks even compared with noisy additive landscapes with similar overall roughness. We suggest that smoothness and the substantial deficit of peaks in the fitness landscapes of protein evolution are fundamental consequences of the physics of protein folding.Comment: 14 pages, 7 figure

    Urban landscapes

    Get PDF

    Restless Landscapes

    Get PDF

    Quantitative analyses of empirical fitness landscapes

    Full text link
    The concept of a fitness landscape is a powerful metaphor that offers insight into various aspects of evolutionary processes and guidance for the study of evolution. Until recently, empirical evidence on the ruggedness of these landscapes was lacking, but since it became feasible to construct all possible genotypes containing combinations of a limited set of mutations, the number of studies has grown to a point where a classification of landscapes becomes possible. The aim of this review is to identify measures of epistasis that allow a meaningful comparison of fitness landscapes and then apply them to the empirical landscapes to discern factors that affect ruggedness. The various measures of epistasis that have been proposed in the literature appear to be equivalent. Our comparison shows that the ruggedness of the empirical landscape is affected by whether the included mutations are beneficial or deleterious and by whether intra- or intergenic epistasis is involved. Finally, the empirical landscapes are compared to landscapes generated with the Rough Mt.\ Fuji model. Despite the simplicity of this model, it captures the features of the experimental landscapes remarkably well.Comment: 24 pages, 5 figures; to appear in Journal of Statistical Mechanics: Theory and Experimen
    • …
    corecore