11,738 research outputs found

    The Development of Methods to Improve In Vitro Embryo Production in Pigs and Cattle

    Get PDF
    The global livestock industry is continually tasked with developing innovative solutions to meet rising food demand. In both economically developed and developing countries, sustainable supplies are essential for the continuous advances in productivity through genetic selection to improve feed conversion efficiency, disease resistance, and fertility. The interval between conception and birth, however, limits the rate at which these enhancements can be implemented. Furthermore, companies often export breeding animals to developing countries to boost genetic quality, but this comes with production, environmental, and logistical costs, as well as ethical issues. In vitro embryo production (IVP) is an emergent technology that is progressively being applied to livestock breeding. IVP could bring incredible economic and environmental benefits, serving to increase selection intensity and facilitate the transport of genetically favourable livestock in a highly assistive, inexpensive, and bio-secure manner. Therefore, the main purpose of this thesis was to improve the efficiency of IVP procedures. IVP offers attractive benefits to breeders, such as increasing the offspring numbers derived from high genetic value animals, in less time, and at a cheaper cost than those produced in vivo. Moreover, it facilitates the study of the genetic constitution of the embryos to transfer only those carrying commercially desirable traits to improve genetic selection. IVP is key to reducing the transportation of live animals as the transport of embryos decreases the costs and reduces the risk of pathogen or disease transmission, favouring biosecurity. With this in mind, this thesis had five specific aims: The first was to improve embryo quality with the addition of cytokines to porcine IVM media. This was successfully achieved as improvements were observed in oocyte maturation and developmental competence to produce higher quality embryos than those produced without cytokine supplementation. The second aim was to assess the effect of different sperm selection methods on basic boar sperm parameters and in vitro fertilisation (IVF) outcomes. This aim was partly successful in that it identified a microfluidic chip-based system as a selection method that produces similar parameters and IVF outcomes to density gradient selection, but with less morphological abnormalities. The third was to compare the slow freezing of boar sperm against modified vitrification protocols. The development of a suitable vitrification protocol was successful in preserving basic sperm parameters, but further work is needed to improve the efficiency compared to slow freezing, the "gold standard" in the breeding industry. The fourth aim was to use preimplantation genetic testing for aneuploidies (PGT A) and SNP chip data from genomic estimated breeding values to screen in vitro produced bovine embryos. This allowed for the identification of chromosomal abnormalities and their origin, which when applied to embryo selection can yield improved pregnancy and live birth rates. The final aim was to use PGT-A to screen the inner-cell mass and trophectoderm of in vivo and IVP bovine embryos to identify and analyse chromosomal abnormalities. A comparison of the data between the inner-cell mass and trophectoderm revealed that trophectoderm biopsies reflect the true ploidy status of the embryo and demonstrate a reliable mean for screening embryos. Taken together, these results have improved the efficiency of porcine and cattle IVP procedures, furthering the development of techniques used for livestock animals

    Genomic investigation of antimicrobial resistant enterococci

    Get PDF
    Enterococcus faecium and Enterococcus faecalis are important causes of healthcare-associated infections in immunocompromised patients. Enterococci thrive in modern healthcare settings, being able to resist killing by a range of antimicrobial agents, persist in the environment, and adapt to changing circumstances. In Scotland, rates of vancomycin resistant E. faecium (VREfm) have risen almost 150% in recent years leaving few treatment options and challenging healthcare delivery. Resistance to the last line agent linezolid has also been detected in E. faecalis. Whole genome sequencing (WGS) allows investigation of the population structure and transmission of microorganisms, and identification of antimicrobial resistance mechanisms. The aim of this thesis was to use WGS to understand the molecular epidemiology of antimicrobial resistant enterococci from human healthcare settings in Scotland. Analysis of some of the earliest identified Scottish linezolid-resistant E. faecalis showed the resistance mechanism, optrA, was present in unrelated lineages and in different genetic elements, suggesting multiple introductions from a larger reservoir. To inform transmission investigations, within-patient diversity of VREfm was explored showing ~30% of patients carried multiple lineages and identifying a within-patient diversity threshold for transmission studies. WGS was then applied to a large nosocomial outbreak of VREfm, highlighting a complex network of related variants across multiple wards. Having examined within-hospital transmission, the role of regional relationships was investigated which showed that VREfm in Scotland is driven by multiple clones transmitted within individual Health Boards with occasional spread between regions. The most common lineage in the national collection (ST203) was estimated to have been present in Scotland since around 2005, highlighting its persistence in the face of increasing infection prevention and control measures. This thesis provides a starting point for genomic surveillance of enterococci in Scotland, and a basis for interventional studies aiming to reduce the burden of enterococcal infections."This work was supported by the Chief Scientist Office (Scotland) [grant number SIRN/10]; the Wellcome Trust [grant numbers 105621/Z/14/Z, 206194]; and the BBSRC [grant number BB/S019669/1]."—Fundin

    Identifying alterations in adipose tissue-derived islet GPCR peptide ligand mRNAs in obesity: implications for islet function

    Get PDF
    In addition to acting as an energy reservoir, white adipose tissue is a vital endocrine organ involved in the modulation of cellular function and the maintenance of metabolic homeostasis through the synthesis and secretion of peptides, known as adipokines. It is known that some of these secretory peptides play important regulatory roles in glycaemic control by acting directly on islet β-cells or on insulin-sensitive tissues. Excess adiposity causes alterations in the circulating levels of some adipokines which, depending on their mode of action, can have pro-inflammatory, pro-diabetic or anti-inflammatory, anti-diabetic properties. Some adipokines that are known to act at β-cells have actions that are transduced by binding to G protein- coupled receptors (GPCRs). This large family of receptors represents ~35% of all current drug targets for the treatment of a wide range of diseases, including type 2 diabetes (T2D). Islets express ~300 GPCRs, yet only one islet GPCR is currently directly targeted for T2D treatment. This deficit represents a therapeutic gap that could be filled by the identification of adipose tissue-derived islet GPCR peptide ligands that increase insulin secretion and overall β-cell function. Thus, by defining their mechanisms of action, there is potential for the development of new pharmacotherapies for T2D. Therefore, this thesis describes experiments which aimed to compare the expression profiles of adipose tissue-derived islet GPCR peptide ligand mRNAs under lean and obese conditions, and to characterise the functional effects of a selected candidate of interest on islet cells. Visceral fat depots were retrieved from high-fat diet-induced and genetically obese mouse models, and from human participants. Fat pads were either processed as whole tissue, or mature adipocyte cells were separated from the stromal vascular fraction (SVF) which contains several other cell populations, including preadipocytes and macrophages. The expression levels of 155 islet GPCR peptide ligand mRNAs in whole adipose tissue or in isolated mature adipocytes were quantified using optimised RNA extraction and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) protocols. Comparisons between lean and obese states in mice models and humans revealed significant modifications in the expression levels of several adipokine mRNAs. As expected, mRNAs encoding the positive control genes, Lep and AdipoQ were quantifiable, with the expression of Lep mRNA increasing and that of AdipoQ mRNA decreasing in obesity. Expression of Ccl4 mRNA, encoding chemokine (C-C motif) ligand 4, was significantly upregulated in whole adipose tissue across all models of obesity compared to their lean counterparts. This coincided with elevated circulating Ccl4 peptide levels. This increase was not replicated in isolated mature adipocytes, indicating that the source of upregulated Ccl4 expression in obesity was the SVF of adipose tissue. Based on this significant increase in Ccl4 mRNA expression within visceral fat and its undetermined effects on β-cell function, Ccl4 was selected for further investigation in MIN6 β-cells and mouse islets. PRESTO-Tango β-arrestin reporter assays were performed to determine which GPCRs were activated by exogenous Ccl4. Experiments using HTLA cells expressing a protease-tagged β- arrestin and transfected with GPCR plasmids of interest indicated that 100ng/mL Ccl4 significantly activated Cxcr1 and Cxcr5, but it was not an agonist at the previously identified Ccl4-target GPCRs Ccr1, Ccr2, Ccr5, Ccr9 and Ackr2. RNA extraction and RT-qPCR experiments using MIN6 β-cells and primary islets from lean mice revealed the expression of Cxcr5 mRNA in mouse islets, but it was absent in MIN6 β-cells. The remaining putative Ccl4 receptors (Ccr1, Ccr2, Ccr5, Ccr9, Cxcr1 and Ackr2) were either absent or present at trace levels in mouse islets and MIN6 β-cells. Recombinant mouse Ccl4 protein was used for functional experiments at concentrations of 5, 10, 50 and 100ng/mL, based on previous reports of biological activities at these concentrations. Trypan blue exclusion testing was initially performed to assess the effect of exogenous Ccl4 on MIN6 β-cell viability and these experiments indicated that all concentrations (5-100ng/mL) were well-tolerated. Since β-cells have a low basal rate of apoptosis, cell death was induced by exposure to the saturated free fatty acid, palmitate, or by a cocktail of pro-inflammatory cytokines (interleukin-1β, tumour necrosis factor-α and interferon-γ). In MIN6 β-cells, Ccl4 demonstrated concentration-dependent protective effects against palmitate-induced and cytokine-induced apoptosis. Conversely, while palmitate and cytokines also increased apoptosis of mouse islets, Ccl4 did not protect islets from either inducer. Quantification of bromodeoxyuridine (BrdU) incorporation into β-cell DNA indicated that Ccl4 caused a concentration-dependent reduction in proliferation of MIN6 β-cells in response to 10% fetal bovine serum (FBS). In contrast, immunohistochemical quantification of Ki67-positive mouse islet β-cells showed no differences in β-cell proliferation between control- and Ccl4-treated islets. Whilst the number of β-cells and δ-cells were unaffected, α- cells were significantly depleted by Ccl4 treatment. Exogenous Ccl4 had no effect on nutrient- stimulated insulin secretion from both MIN6 β-cells and primary mouse islets. The 3T3-L1 preadipocyte cell line was used to assess potential Ccl4-mediated paracrine and/or autocrine signalling within adipose tissue. Ccl4 did not alter the mRNA expression of Pparγ, a master regulator of adipocyte differentiation, but did significantly downregulate the mRNA expression of the crucial adipogenic gene, adiponectin. Oil Red O staining and Western blotting were performed to assess lipid accumulation, and insulin and lipolytic signalling, respectively, and these experiments indicated that the observed Ccl4-induced decrease in adiponectin expression failed to correlate with any changes in adipocyte function. In summary, these data demonstrated anti-apoptotic and anti-proliferative actions of the adipokine, Ccl4, on MIN6 β-cells that were not replicated in mouse islets. The absence of any anti-apoptotic, insulin secretory and/or pro-proliferative effects of Ccl4 in islet β-cells suggests that it is unlikely to play a role in regulating β-cell function via crosstalk between adipose tissue and islets. The divergent functional effects highlight that whilst MIN6 cells are a useful primary β-cell surrogate for some studies, primary islets should always be used to confirm physiological relevance. On the other hand, significant α-cell depletion following Ccl4 treatment suggests a cell-specific function within the islets. Furthermore, Ccl4 impaired adiponectin mRNA expression in adipocytes, although, how adipocyte function is affected as a result requires further investigation. Collectively, these data have contributed increased understanding of the role of obesity in modifying the expression of adipose tissue-derived islet GPCR peptide ligands

    Functional Nanomaterials and Polymer Nanocomposites: Current Uses and Potential Applications

    Get PDF
    This book covers a broad range of subjects, from smart nanoparticles and polymer nanocomposite synthesis and the study of their fundamental properties to the fabrication and characterization of devices and emerging technologies with smart nanoparticles and polymer integration

    Metabolites in fish and humans as a response to different food ingredients : a metabolomics approach

    Get PDF
    The main objective of this thesis was to evaluate metabolomics changes in humans and fish as a response to food/feed consumption. To alleviate the environmental impact of animal production and maximize the use of resources, the valorization of meat by-products might be an attractive alternative. A meat product containing heart and aorta tissue from pork was designed and analyzed for fatty acid and metabolite composition. In comparison with a control of similar qualities, the designed meat product (or test product) showed higher monounsaturated fatty acid and tyramine levels and lower levels of sugars. The test meat product was used in a randomized controlled clinical trial to test for potential health effects in patients showing atherosclerosis symptoms. Patients receiving the test product showed a decrease in blood levels of low-density lipoproteins, total cholesterol, atherogenic index and triacylglycerols. To reduce the impact of animal production on ecosystems, the replacement of feed ingredients by a microbial alternative was realized. In this study, vegetable oils included in the feed of Arctic char (Salvelinus alpinus) were replaced by biomass of the oleaginous yeast (Rhodotorula toruloides). The analysis of the yeast biomass showed safe levels of pollutants and heavy metals. Fish growth and muscle fatty acid profile were similar to the control. A higher liver weight and hepatosomatic index were observed in fish fed including the yeast biomass, albeit no significant difference in liver fat content or in hepatic enzyme activity was observed. Quantification of plasma metabolites revealed higher levels of metabolites involved in energy pathways such as one-carbon metabolism and gluconeogenesis.In conclusion, this thesis showed that metabolomics can be applied to evaluate effects of food/feed at the molecular level in complex systems. It adds knowledge on the effects of meat by-product consumption in the particular case of atherosclerosis symptoms. The fish feed trial showed the possibility of feed modification with a specific yeast

    Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases

    Get PDF
    Diseases affecting the anterior segment of the eye are the primary causes of vision impairment and blindness globally. Drug administration through the topical ocular route is widely accepted because of its user/patient friendliness - ease of administration and convenience. However, it remains a significant challenge to efficiently deliver drugs to the eye through this route because of various structural and physiological constraints that restrict the distribution of therapeutic molecules into the ocular tissues. The bioavailability of topically applied ocular medications such as eye drops is typically less than 5%. Developing novel delivery systems to increase the retention time on the ocular surfaces and permeation through the cornea is one of the approaches adopted to boost the bioavailability of topically administered medications. Drug delivery systems based on nanotechnology such as micelles, nanosuspensions, nanoparticles, nanoemulsions, liposomes, dendrimers, niosomes, cubosomes and nanowafers have been investigated as effective alternatives to conventional ocular delivery systems in treating diseases of the anterior segment of the eye. This review discussed different nanotechnology-based delivery systems that are currently investigated for treating and managing diseases affecting the anterior ocular tissues. We also looked at the challenges in translating these systems into clinical use and the prospects of nanocarriers as a vehicle for the delivery of phytoactive compounds to the anterior segment of the eye

    Effects of municipal smoke-free ordinances on secondhand smoke exposure in the Republic of Korea

    Get PDF
    ObjectiveTo reduce premature deaths due to secondhand smoke (SHS) exposure among non-smokers, the Republic of Korea (ROK) adopted changes to the National Health Promotion Act, which allowed local governments to enact municipal ordinances to strengthen their authority to designate smoke-free areas and levy penalty fines. In this study, we examined national trends in SHS exposure after the introduction of these municipal ordinances at the city level in 2010.MethodsWe used interrupted time series analysis to assess whether the trends of SHS exposure in the workplace and at home, and the primary cigarette smoking rate changed following the policy adjustment in the national legislation in ROK. Population-standardized data for selected variables were retrieved from a nationally representative survey dataset and used to study the policy action’s effectiveness.ResultsFollowing the change in the legislation, SHS exposure in the workplace reversed course from an increasing (18% per year) trend prior to the introduction of these smoke-free ordinances to a decreasing (−10% per year) trend after adoption and enforcement of these laws (β2 = 0.18, p-value = 0.07; β3 = −0.10, p-value = 0.02). SHS exposure at home (β2 = 0.10, p-value = 0.09; β3 = −0.03, p-value = 0.14) and the primary cigarette smoking rate (β2 = 0.03, p-value = 0.10; β3 = 0.008, p-value = 0.15) showed no significant changes in the sampled period. Although analyses stratified by sex showed that the allowance of municipal ordinances resulted in reduced SHS exposure in the workplace for both males and females, they did not affect the primary cigarette smoking rate as much, especially among females.ConclusionStrengthening the role of local governments by giving them the authority to enact and enforce penalties on SHS exposure violation helped ROK to reduce SHS exposure in the workplace. However, smoking behaviors and related activities seemed to shift to less restrictive areas such as on the streets and in apartment hallways, negating some of the effects due to these ordinances. Future studies should investigate how smoke-free policies beyond public places can further reduce the SHS exposure in ROK

    Novelties in the pharmacological approaches for chronic heart failure: new drugs and cardiovascular targets

    Get PDF
    Despite recent advances in chronic heart failure (HF) management, the prognosis of HF patients is poor. This highlights the need for researching new drugs targeting, beyond neurohumoral and hemodynamic modulation approach, such as cardiomyocyte metabolism, myocardial interstitium, intracellular regulation and NO-sGC pathway. In this review we report main novelties on new possible pharmacological targets for HF therapy, mainly on new drugs acting on cardiac metabolism, GCs-cGMP pathway, mitochondrial function and intracellular calcium dysregulation

    Association of gut microbiota and SCFAs with finishing weight of Diannan small ear pigs

    Get PDF
    Finishing weight is a key economic trait in the domestic pig industry. Evidence has linked the gut microbiota and SCFAs to health and production performance in pigs. Nevertheless, for Diannan small ear (DSE) pigs, a specific pig breed in China, the potential effect of gut microbiota and SCFAs on their finishing weight remains unclear. Herein, based on the data of the 16S ribosomal RNA gene and metagenomic sequencing analysis, we found that 13 OTUs could be potential biomarkers and 19 microbial species were associated with finishing weight. Among these, carbohydrate-decomposing bacteria of the families Streptococcaceae, Lactobacillaceae, and Prevotellaceae were positively related to finishing weight, whereas the microbial taxa associated with intestinal inflammation and damage exhibited opposite effects. In addition, interactions of these microbial species were found to be linked with finishing weight for the first time. Gut microbial functional annotation analysis indicated that CAZymes, such as glucosidase and glucanase could significantly affect finishing weight, given their roles in increasing nutrient absorption efficiency. Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologies (KOs) and KEGG pathways analysis indicated that glycolysis/gluconeogenesis, phosphotransferase system (PTS), secondary bile acid biosynthesis, ABC transporters, sulfur metabolism, and one carbon pool by folate could act as key factors in regulating finishing weight. Additionally, SCFA levels, especially acetate and butyrate, had pivotal impacts on finishing weight. Finishing weight-associated species Prevotella sp. RS2, Ruminococcus sp. AF31-14BH and Lactobacillus pontis showed positive associations with butyrate concentration, and Paraprevotella xylaniphila and Bacteroides sp. OF04-15BH were positively related to acetate level. Taken together, our study provides essential knowledge for manipulating gut microbiomes to improve finishing weight. The underlying mechanisms of how gut microbiome and SCFAs modulate pigs’ finishing weight required further elucidation
    corecore